Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho Q=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)
n thuộc N*, chứng minh Q<11/4
Bạn tham khảo ở link này nhé :
Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến
a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)
\(=4-\frac{4}{7}=\frac{24}{7}\)
b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)
\(=8+\frac{7}{11}=\frac{95}{11}\)
c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)
\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)
\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)
\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)
d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)
\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)
\(=5\cdot\frac{7}{35}=1\)
e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)
\(=\frac{42}{43}\)
Hơi lâu nên đợi anh chút
\(D=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)
\(\Rightarrow3D=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\)
\(\Rightarrow3D-D=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\right)\)
\(\Rightarrow2D=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}-\frac{3n+1}{3^n}\)
Đặt \(M=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\)
\(\Rightarrow3M=12+3+1+...+\frac{1}{3^{n-3}}\)
\(\Rightarrow3M-M=\left(12+3+1+...+\frac{1}{3^{n-3}}\right)-\left(4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\right)\)
\(\Rightarrow2M=11-\frac{1}{3^{n-2}}< 11\)
\(\Rightarrow2M< 11\)
\(\Rightarrow M< \frac{11}{2}\)
\(\Rightarrow2D< \frac{11}{2}\)
\(\Rightarrow D< \frac{11}{4}\left(đpcm\right)\)