K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Hơi lâu nên đợi anh chút

15 tháng 8 2019

\(D=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)

\(\Rightarrow3D=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\)

\(\Rightarrow3D-D=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\right)\)

\(\Rightarrow2D=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}-\frac{3n+1}{3^n}\)

Đặt \(M=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\)

\(\Rightarrow3M=12+3+1+...+\frac{1}{3^{n-3}}\)

\(\Rightarrow3M-M=\left(12+3+1+...+\frac{1}{3^{n-3}}\right)-\left(4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\right)\)

\(\Rightarrow2M=11-\frac{1}{3^{n-2}}< 11\)

\(\Rightarrow2M< 11\)

\(\Rightarrow M< \frac{11}{2}\)

\(\Rightarrow2D< \frac{11}{2}\)

\(\Rightarrow D< \frac{11}{4}\left(đpcm\right)\)

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

Bạn tham khảo ở link này nhé :

Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến

1 tháng 8 2020

thanks friend!vui

a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)

\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)

\(=4-\frac{4}{7}=\frac{24}{7}\)

b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)

\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)

\(=8+\frac{7}{11}=\frac{95}{11}\)

c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)

\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)

\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)

\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)

d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)

\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)

\(=5\cdot\frac{7}{35}=1\)

e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)

\(=\frac{42}{43}\)