Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Ta có: \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow12x-8y=6z-12x=8y-6z=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{2}=x,\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{4}=\dfrac{x}{2},\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) (đpcm)
Tham khảo tại đây nhé: Câu hỏi của Phong Tuấn Đỗ - Toán lớp 7 | Học trực tuyến
Sửa đề:
$\dfrac{3x-2y}{4}=\dfrac{2z-4x}{9}=\dfrac{4y-3z}{9}$
\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{27}=\dfrac{2\left(4y-3z\right)}{18}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+27+18}=\dfrac{0}{16+27+18}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\4y-3z=0\\2z-4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\dfrac{0}{29}=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{6z-12x}{9}=0\\\dfrac{8y-6z}{4}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Ta có
\(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)
=> \(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất DTS bằng nhau
\(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)=\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}\)=\(\dfrac{0}{29}\)=0
\(\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\),\(\dfrac{y}{3}=\dfrac{z}{4},\dfrac{z}{4}=\dfrac{z}{2}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Vậy \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)
Theo đề ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=> \(4.\dfrac{3x-2y}{4}=3.\dfrac{2z-4x}{3}=2.\dfrac{4y-3z}{2}\)
=> \(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
=> \(\dfrac{12x-8y}{16}+\dfrac{6z-12x}{9}+\dfrac{8y-6z}{4}=\dfrac{0}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=8y=6z\\\end{matrix}\right.\)
=> \(\dfrac{12x}{24}=\dfrac{8y}{24}=\dfrac{6z}{24}\)( MSC: 24)
=> \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{12x-8x+6x-12x+8y-6z}{16+9+4}\\ =0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\Rightarrow\dfrac{4.\left(3x-2y\right)}{4.4}=\dfrac{3.\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{0}{29}\)
\(\Rightarrow\) 12x= 8y
6z=12x
8y=6z
=> 12x=8y=6z
MSC: 24
ta có: \(\dfrac{12x}{24}=\dfrac{8y}{24}=\dfrac{6z}{24}\)= \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)( đpcm)
Từ \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{3.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{12+9+4}\)
\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\\\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\\\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\rightarrowđpcm\)