\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a;b;c\ne0;b\ne c\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Ta có:

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\Leftrightarrow ab-bc=ac-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

27 tháng 12 2018

thak

19 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )

Võ Nguyễn Thương Thương 

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

22 tháng 9 2017

Theo đề bài thì:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)

\(=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}\)

\(=\dfrac{\left(a+b+b+c+c+a\right)-a-b-c}{c+a+b}\)

\(=\dfrac{a+b+c}{c+a+b}=1\)

Nên: \(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)

\(P=\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)\)

\(P=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)

\(P=\left(\dfrac{b+c-a+c+a-b}{a}\right)\left(\dfrac{c+a-b+a+b-c}{b}\right)\left(\dfrac{a+b-c+b+c-a}{c}\right)\)

\(P=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=\dfrac{8ab}{abc}=8\)

Vậy \(P=8\)

29 tháng 7 2017

Trần Thọ Đạt ông giải dùm đi!Bn ý k bk tag nên tui tag dùm!

29 tháng 7 2017

Trần Thọ Đạt, giải giúp mình

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?

14 tháng 12 2017

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Khi đó \(P=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(P=\dfrac{8abc}{abc}=8\)