K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2019

a/ Do H là trung điểm BC \(\Rightarrow BH=\frac{a\sqrt{3}}{2}\)

\(SH\perp AC\Rightarrow SH\perp\left(ABC\right)\Rightarrow\widehat{SBH}\) là góc giữa SB và (ABC)

\(tan\widehat{SBH}=\frac{SH}{BH}=\frac{\sqrt{3}}{3}\Rightarrow\widehat{SBH}=30^0\)

b/ Qua M kẻ đường thẳng song song AC cắt BH tại N

\(\Rightarrow MN\) là đường trung bình tam giác BCH \(\Rightarrow\left\{{}\begin{matrix}MN=\frac{1}{2}CH=\frac{1}{4}AC=\frac{a}{4}\\HN=\frac{1}{2}BH=\frac{a\sqrt{3}}{4}\end{matrix}\right.\)

\(\Rightarrow SN=\sqrt{SH^2+HN^2}=\frac{a\sqrt{7}}{4}\)

\(\left\{{}\begin{matrix}MN\perp BH\\MN\perp SH\end{matrix}\right.\) \(\Rightarrow MN\perp\left(SBH\right)\)

\(\Rightarrow\widehat{MSN}\) là góc giữa SM và (SBH)

\(tan\widehat{MSN}=\frac{MN}{SN}=\frac{\sqrt{7}}{7}\)

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

6 tháng 6 2017

+ Ta có  S A B ⊥ A B C S A C ⊥ A B C S A C ∩ S A B = S A ⇒ S A ⊥ A B C

+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N ⇒  N là trung điểm của AC (MN//BC).

+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là  S B A ^ = 60 °

⇒  SA = AB.tan 60 °  = 2a 3

AC =  A B 2 + B C 2 = 2 a 2

+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị IJ → qua ba vectơ không cùng phương  A B → ;   A C → ;   A S → .

I J → = I A → + A N → + N J → = m A B → + 1 2 A C → + p N S → = m A B → + 1 2 A C → + p N A → + A S → = m A B → + 1 − p 2 A C → + p A S →

Ta có: I J → ⊥ A B → I J → ⊥ N S → ⇔ I J → . A B → = 0 I J → . N S → = 0  

Thay vào ta tính được m = -6/13; p = 1/13

Do đó: I J → = − 6 13 A B → + 6 13 A C → + 1 13 A S → . Suy ra

169 I J 2 = 36 A C 2 + 36 A B 2 + A S 2 − 72 A B → . A C → .

Thay số vào ta tính được IJ = 2 a 39 13 .

Vậy d(AB; SN) = 2 a 39 13 .

Đáp án D

NV
11 tháng 4 2022

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=AC\sqrt{2}=a\sqrt{2}\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)

\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)

\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)

b.

Theo cmt, \(BC\perp\left(SAC\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)

\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)

\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

NV
11 tháng 4 2022

undefined

25 tháng 5 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Gọi (α) là mặt phẳng qua SM và song song với AB.

Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.

Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.

+ Xác định khoảng cách.

Qua N kẻ đường thẳng d’ song song với AB.

Gọi (P) là mặt phẳng đi qua SN và d’.

Ta có: AB // (P).

Khi đó: d(AB, SN) = d(A, (P)).

Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:

d(AB, SN) = d(A, (SND)) = AH.

Trong tam giác SAD, ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác SAB, ta có S A   =   A B . tan 60 o   =   2 a 3 và AD = MN = BC/2 = a.

Thế vào (1), ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: BC vuông góc (SAM)

=>BC vuông góc SM

=>(SM;(ABC))=90 độ

 

23 tháng 3 2019

Chọn D.

Lời giải.

Ta có

Từ (1) và (2) 

         

Gọi I là trung điểm AC 

Mặt khác

Từ (3) và (4) 

 

nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC.

Xét tam giác CHK vuông tại K, có 

7 tháng 7 2017