Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :
- MN = MB ( gt )
- Góc AMN = góc AMB ( vì MA là phân giác )
- MA : cạnh chung
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )
\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )
b) Gọi giao điểm giữa NB và MA là I
Xét \(\Delta\)INM và \(\Delta\)IBM có :
- MN = MB ( gt )
- Góc IMN = góc IMB ( vì MI là phân giác )
- MI : cạnh chung
\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )
\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )
Mà góc MIN + góc MIB = 180 ( do kề bù )
nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .
a: Xét ΔMNA và ΔMBA có
MN=MB
góc NMA=gócBMA
MA chung
Do đó: ΔMNA=ΔMBA
=>AN=AB
b: MN=MB
AN=AB
=>MA là trung trực của NB
=>MA vuông góc với NB
c: Xét ΔMCP có MN/MC=MB/MP
nên NB//CP
d: Xét ΔANC và ΔABP có
AN=AB
góc ANC=góc ABP
NC=BP
Do đó: ΔANC=ΔABP
=>góc NAC=góc BAP
=>góc NAC+góc NAB=180 độ
=>B,A,C thẳng hàng
a,Xét Δ MAN và Δ MBN có :
MN = MB ( gt )
MA là cạnh chung
\(\widehat{NMA} = \widehat{BMA}\) ( do MA là tia phân giác \(\widehat{NMB}\) )
=> Δ MAN = Δ MBN ( trường hợp c-g-c )
=> AN = AB ( hai cạnh tương ứng )
b,Do Δ MAN = Δ MBN ( cm trên )
=> \(\widehat{MAN} = \widehat{MAB}\) ( hai góc tương ứng )
mà \(\widehat{MAN} + \widehat{MAB} = 180^0\) ( hai góc kề bù )
=> \(\widehat{MAN} = \widehat{MAB} = 180^0 : 2 =90^0 \)
=> NB ⊥ MA
a: Xét ΔMNA và ΔMBA có
MN=MB
góc NMA=góc BMA
MA chung
Do đó: ΔMNA=ΔMBA
b; MN=MB
AN=AB
Do đó; MA là đường trung trực của NB
=>MA vuông góc với NB
c: Xét ΔMCP có MN/NC=MB/BP
nên NB//CP
d: Xét ΔANC và ΔABP có
AN=AB
góc ANC=góc ABP
NC=BP
Do đó: ΔANC=ΔABP
=>góc NAC=góc BAP
=>góc NAC+góc NAB=180 độ
=>B,A,C thẳng hàng
a: Xét ΔMNA và ΔMBA có
MN=MB
\(\widehat{NMA}=\widehat{BMA}\)
MA chung
Do đó: ΔMNA=ΔMBA
Suy ra: AN=AB
Ko đúng yêu cầu đề bài = báo cáo nhá a