Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A ; Ta có : góc ADB=góc AEC=90 độ( đề cho)
góc BAC ( chung)
vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)
B; Xét tam giác EHB và tam giác BCH có:
góc CBH = góc BEH=90 độ
Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)
vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)
dựa theo 2 tam giác đồng dạng ta có tỉ lệ:
EH/HD=BH/HC ( Ta -lét)
EH*HC=BH*HD( ĐPCM)
C; Theo phần a ta có :
tam giác ABD đồng dạng với tam giác ACE:
suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )
góc A chung
vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)
a) Xét\(\Delta\) ADB và \(\Delta\)ACE có:
Góc A chung
Góc D = Góc E (=900)
\(\Rightarrow\)\(\Delta\)ADN \(\infty\) \(\Delta\)ACE ( g.g )
b) Xét \(\Delta\)HEB và \(\Delta\)HDC có:
Góc ABD = Góc ACE ( CM ý a)
Góc E = Góc D ( =900)
\(\Rightarrow\)\(\Delta\)HEB\(\infty\) \(\Delta\)HDC ( g.g )
\(\Rightarrow\) \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\) \(\Rightarrow\) HE.HC = HB.HD
c) Xét AFC và IFC có:
Góc C chung
Góc F = Góc I ( = 900 )
\(\Rightarrow\Delta AFC\infty\Delta FIC\left(g.g\right)\)
\(\Rightarrow\dfrac{AF}{IF}=\dfrac{FC}{IC}\Rightarrow\dfrac{AF}{FC}=\dfrac{IF}{IC}\)
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đo: ΔABD\(\sim\)ΔACE
b: Xét ΔBEH vuông tại E và ΔBDA vuông tại D có
góc EBH chung
Do đó: ΔBEH\(\sim\)ΔBDA
Suy ra: BE/BD=BH/BA
hay \(BE\cdot BA=BH\cdot BD\)
c: Ta có: ΔABD\(\sim\)ΔACE
nên AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
DO đó: ΔADE\(\sim\)ΔABC