\(\Delta\)ABC vuông tại A, vẽ đường cao AH. Trên tia đói của tia HA lấy điểm D sao ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

A B D H E C 1 2 3 4

Giải:
a) Xét \(\Delta ACH,\Delta DCH\)có:
HA = HD ( gt )

\(\widehat{H_1}=\widehat{H_2}=90^o\)

HC: cạnh chung

\(\Rightarrow\Delta ACH=\Delta DCH\left(c-g-c\right)\) ( đpcm )

b) Xét \(\Delta HED,\Delta HBA\) có:

HD = HA ( gt )

\(\widehat{H_2}=\widehat{H_4}=90^o\)
HE = HB ( gt )

\(\Rightarrow\Delta HED=\Delta HBA\left(c-g-c\right)\) ( đpcm )

b) Xét \(\Delta BHD,\Delta EHA\) có:
\(BH=EH\left(gt\right)\)

\(\widehat{H_3}=\widehat{H_1}=90^o\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow\Delta BHD=\Delta EHA\left(c-g-c\right)\)

\(\Rightarrow BD=AE\) ( cạnh t/ứng )

\(BE+DC>BC\)

\(\Rightarrow AE+DC>BC\left(đpcm\right)\)

Vậy...

13 tháng 3 2017

c thôi nha

Ta có : AE = AB (vì tam giác HED bằng tam giác HBA )(1)

và CD = AC (vì tam ACH bằng tam giác DCH )(2)

Từ (1)và (2) suy ra AE+CD=AB+AC(*)

Lại có AB+AC > BC (vì tổng số đo 2 cạnh của tam giác luôn luôn lớn hơn cạnh thứ 3)(**)

Từ (*)và (**) suy ra AE+CD>BC(đpcm)

a: Xét ΔABC và ΔDEC có

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)

CB=CE
Do đó: ΔABC=ΔDEC

b: Ta có: ΔABC=ΔDEC

nên \(\widehat{BAC}=\widehat{EDC}=90^0\)

=>AD\(\perp\)DE

c: Xét tứ giác ABDE có

AB//DE

AB=DE

Do đó: ABDE là hình bình hành

Suy ra: BD//AE

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

14 tháng 12 2019

Không biết có phải mình vẽ hình sai hay không chứ mình thấy đề hơi vô lí 

24 tháng 4 2017

Chứng minh

a, Xét \(\Delta MAB\)\(\Delta MDC\) có :

MA = MD (gt)

\(\widehat{AMB}=\widehat{DMC}\) ( đối đỉnh )

MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\)

b, \(\Delta MAB=\Delta MDC\) (câu a)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) ( ở vị trí so le trong)

\(\Rightarrow\) AB // CD

\(\Rightarrow\widehat{BAC}+\widehat{ACD}=180^O\)

\(\Rightarrow90^O+\widehat{ACD}=180^O\)

\(\Rightarrow\widehat{ACD}=90^O\)

\(\Rightarrow\Delta ACD\) vuông tại C

24 tháng 4 2017

câu c nè ( hơi lằng nhằng chút nha )

Chứng minh

c, \(\Delta MAB=\Delta MDC\) ( câu a )

\(\Rightarrow AB=CD\) ( hai cạnh tương ứng )

Xét \(\Delta KAB\)\(\Delta KCD\) có :

AK = CK (gt)

\(\widehat{KAB}=\widehat{KCD}\) (=1v)

AB = CD (c/m trên)

\(\Rightarrow\Delta KAB=\Delta KCD\) (c.g.c)

\(\Rightarrow KB=KD\) (hai cạnh tương ứng)

\(\widehat{AKB}=\widehat{CKD}\) (hai góc tương ứng)

\(\Rightarrow\widehat{AKB}+\widehat{BKD}=\widehat{CKD}+\widehat{BKD}\) hay \(\widehat{AKD}=\widehat{CKB}\)

Xét \(\Delta AKD\)\(\Delta CKB\) có :

AK = CK (gt)

\(\widehat{AKD}=\widehat{CKB}\) (c/m trên )

KD = KB ( c/m trên )

\(\Rightarrow\Delta AKD=\Delta CKB\) (c.g.c)

\(\Rightarrow\widehat{ADK}=\widehat{CBK}\) ( hai góc tương ứng )

Xét \(\Delta IKB\)\(\Delta NKD\) có :

\(\widehat{BKD}\) chung

KB = KD (c/m trên )

\(\widehat{KBI}=\widehat{KDN}\) (c/m trên )

\(\Rightarrow\Delta IKB=\Delta NKD\) (g.c.g)

\(\Rightarrow KI=KN\) (hai cạnh tương ứng )

\(\Rightarrow\Delta KIN\) cân

26 tháng 4 2017

f)Vẽ \(DM\perp AC\)

\(\Rightarrow DM< MC\)

Ta có:\(\widehat{BAD}=\widehat{BDA}\)

\(BAD+\widehat{DAM}=\widehat{BDA}+\widehat{HAD}\left(=90^0\right)\)

\(\Rightarrow\widehat{DAH}=\widehat{DAM}\)

\(\Rightarrow\Delta DAH=\Delta DAM\left(ch-gn\right)\)

\(\Rightarrow DH=DM\)

\(DM< DC\)

\(\Rightarrow HD< DC\left(đpcm\right)\)

27 tháng 4 2017

DM<DC nha

10 tháng 7 2017

B A C M K H G I

a) Xét hai tam giác MHB và MKC có:

MB = MC (gt)

Góc HMB = góc KMC (đối đỉnh)

MH = MK (gt)

Vậy: tam giác MHB = tam giác MKC (c - g - c)

c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

=> Tam giác MAB cân tại M

=> MH là đường cao đồng thời là đường trung tuyến

hay HB = HA

=> CH là đường trung tuyến ứng với cạnh AB

Hai đường trung tuyến AM và CH cắt nhau tại G

=> G là trọng tâm của tam giác ABC

Mà BI đi qua trọng tâm G (G thuộc BI)

Do đó BI là đường trung tuyến còn lại

hay I là trung điểm của AC (đpcm).

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo