\(\Delta\)ABC vuông tại A. Trên tia đối tia AB lấy E sao cho AE=AC, trên tia đối tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

B A C M K H G I

a) Xét hai tam giác MHB và MKC có:

MB = MC (gt)

Góc HMB = góc KMC (đối đỉnh)

MH = MK (gt)

Vậy: tam giác MHB = tam giác MKC (c - g - c)

c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

=> Tam giác MAB cân tại M

=> MH là đường cao đồng thời là đường trung tuyến

hay HB = HA

=> CH là đường trung tuyến ứng với cạnh AB

Hai đường trung tuyến AM và CH cắt nhau tại G

=> G là trọng tâm của tam giác ABC

Mà BI đi qua trọng tâm G (G thuộc BI)

Do đó BI là đường trung tuyến còn lại

hay I là trung điểm của AC (đpcm).

3 tháng 3 2017

A B C M H N K

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (\(\Delta ABC\) cân tại A)

AM chung

BM = CM (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{HBM}=\widehat{KCM}\)

Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;

BM = CM

\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)

\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)

\(\Delta ABM=\Delta ACM\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)

\(\Rightarrow\Delta ABM\) vuông tại M

Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=17^2-8^2\)

\(\Rightarrow AM^2=15^2\)

\(\Rightarrow AM=15\)

Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)

Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

22 tháng 10 2016

vnen hay sgk thường (trang mấy, bài mấy nữa)

22 tháng 10 2016

đây là toán nâng cao đó bn

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

27 tháng 3 2017

A B C D M K F E N O

cau a:CB;AN là trung tuyến ;CB/MB=2/3

​> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng

câu b:DM là đường trung tuyến thứ 3> K trung diemAC.

​cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM

a: Xét ΔABD và ΔACE có 

\(\widehat{ABD}=\widehat{ACE}\)

AB=AC
\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABC có AE/AB=AD/AC

nên DE//BC

b: Ta có ΔADE cân tại A

mà AN là đường trung tuyến

nên AN\(\perp\)DE

=>AN\(\perp\)BC