Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABC vuông tại A
mà AH là đường cao
nên HA^2=HB*HC
c: AI/IH=BA/BH
EC/AE=BC/BA
mà BA/BH=BC/BA
nên AI/IH=EC/AE
=>AI*AE=IH*EC
Bài 1
a, Xét ΔABM và ΔACB có
\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)
⇒ ΔABM ~ ΔACB (g.g)(đpcm)
b, Vì ΔABM ~ ΔACB
⇒ \(\frac{AB}{AC}=\frac{AM}{AB}\)
⇒ AB2 = AM . AC
⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)
Vậy AM = 1cm
c, Vì ΔABM ~ ΔACB
⇒ \(\widehat{M_1}=\widehat{ABC}\)
⇒ \(\widehat{M_1}=\widehat{ABH}\)
Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)
AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)
ΔAHB và ΔAKM có
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)
⇒ ΔAHB ~ ΔAKM (g.g)
⇒ \(\frac{AB}{AM}=\frac{AH}{AK}\)
⇒ AB . AK = AH . AM (đpcm)
d, Vì ΔABH ~ ΔAMK
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)
⇒ SΔABH = 4SΔAMK (đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Hình bạn tự vẽ nhé
a) Xét ΔABH và ΔCBA có :
^AHB = ^A = 900
^B chung
=> ΔABH ~ ΔCBA (g.g)
b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
\(BC^2=AB^2+AC^2\)
<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)
c) Xét ΔABD và ΔHBI có :
^A = ^BHI = 900
^ABD = ^HBI ( do BD là phân giác của ^B )
=> ^ABD ~ ΔHBI (g.g)
=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )
d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)
Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)
mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI
<=> 9 = 4SHBI <=> SHBI = 9/4cm2