\(\Delta\)ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

=>AB2+AC2=262 (1)

Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:

\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)

=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)

11 tháng 5 2016

Sửa 

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)

\(\Rightarrow AC\approx9,7\left(cm\right)\)

=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)

31 tháng 12 2017

vì tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=225\)

mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{255}{25}=\frac{51}{5}\)

đến đây thì dễ rồi nhé 

^_^

26 tháng 1 2018

A B C 6 cm 8 cm

\(\Delta ABC\)vuông tại A => AB+ AC2 = BC2 (Định lí pytago)

<=> 62 + 82 = BC2

<=> BC2 = 36 + 64

<=> BC2 = 100

<=> BC = \(\sqrt{100}\)

Vậy BC = 10 cm

26 tháng 1 2018

làm còn chưa chặt chẽ bn ak

21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

14 tháng 2 2017

Bài 1:
Giải:

Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)

Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+AC^2=15^2=225\)

Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

\(AB^2+AC^2=225\)

\(\Rightarrow9k^2+16k^2=225\)

\(\Rightarrow25k^2=225\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=3\)

\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)

Vậy AB = 9 cm; AC = 12 cm

14 tháng 2 2017

2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:

AH2 + BH2 = AB2

=> BH.HC + BH2 = AB2

=> BH( HC + BH ) = AB2

=> BH.BC = AB2 (1)

áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:

AH2 + HC2 = AC2

=> BH.HC + HC2 = AC2

=> HC( BH + HC ) = AC2

=> HC.BC = AC2 (2)

Từ 1 và 2 ta có:

=> BH.BC + HC.BC = AB2 + AC2

=> BC( BH + HC ) = AB2 + AC2

=> BC.BC = AB2 + AC2

=> BC2 = AB2 + AC2

Theo định lí Py - ta - go đảo

=> \(\Delta ABC\) vuông tại A (đpcm)

A H C C