Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`
Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`
`=>\hat{C}=\hat{A_1}`
Xét `\triangle ABC` và `\triangle HBA` có:
`{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)
`b)` Ta có: `BC=HB+HC=4+9=13(cm)`
Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao
`@AH=\sqrt{BH.HC}=6 (cm)`
`@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`
Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`
`=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`
`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`
Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`
`=>AD.AB=AE.AC`
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
a, HA^2=HB.HC
Xet tg AHB va tg AHC
Có: H chung
Va góc HCA= góc ABH ( phụ với Â)
=>Tam giác AHB đồng dạng tam giác AHC
=> AH/BH=HC/AH
=>đpcm
b, Ta có: AH/BH=HC/AH
=>AH^2=BH.HC
=>AH^2=144
=>AH=12
*Tính AC
Áp dụng định lý Pi-ta-go:
AC^2=AH^2+HC^2
AC^2=144+256
AC=20cm
*Tính AB
Áp dụng định lý Pi-ta-go:
AB^2=BH^2+AH^2
AB^2=81+144
AB^2=225
AB=15cm
Với BH = 9cm, HC = 16cm => BC = BH + HC = 9 + 16 = 25 cm
Ta có: A H 2 = HB.HC (cmt)
=> A H 2 = 9.16 = 144 => AH = 12cm
Nên diện tích tam giác ABC là S A B C = 1 2 .AH.BC = 1 2 .12.25 = 150 c m 2
Đáp án: C
Gọi D là giao điểm của AC và đường vuông góc với BC tại E.
Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)
Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = H C B C = 9 9 + 3 , 5 = 18 25 2
Từ (1) và (2) suy ra S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2 ( 3 )
Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên
S D E C : S A H C = ( E C H C ) 2 ( 4 )
Từ (3) và (4) suy ra E C H C = 5 6 tức là E C 9 = 5 6 => EC = 7,5cm.
Đáp án: D
xet tam giac ABC co AC^2 = BC^2 - AB^2 (py ta go) vi HB+HC=BC suy ra BC=16+9=25
xet tam giac AHC co AH^2 = AC^2 - HC^2 (1)
xet tam giac AHB co AH^2 = AB^2 - HB^2 = BC^2 - Ac^2 -HC^2 (2)
tu (1) va (2) suy ra AC^2 - HC^2 = BC^2 - AC^2 - HB^2
suy ra 2AC^2 = BC^2 + HC^2 - HB^2 = 25^2 + 16^2 -9^2 =800 suy ra AC^2 =400 cm
Vi AH^2 = AC^2 - HC^2 = 400 - 16^2 = 144 suy ra AH=12cm