\(\Delta\)ABC vuông ở A biết BC=20cm và 4.AB=3.AC.Tính độ dài các cạnh AB,AC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có: \(\Delta\)ABC vuông tại A => \(AB^2+AC^2=BC^2=400\)

Ta có: \(\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)

\(\Rightarrow\hept{\begin{cases}AB^2=16.9=144\\AC^2=16^2\end{cases}}\)=> AB=12 và AC=16

17 tháng 2 2021

đặt AC=3k;AB=4k(k>0)

ta có: (AC)^2+(AB)^2=BC^2

hay: 25k^2=400

nên: K^2=4^2 HAY K=4 

nên: AC=16;AB=12

17 tháng 2 2021

sorry mình bất cẩn tí rồi AB=16;AC=12

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

31 tháng 12 2017

vì tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=225\)

mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{255}{25}=\frac{51}{5}\)

đến đây thì dễ rồi nhé 

^_^

VC
1 tháng 2 2021

Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn

Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)

Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )

Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)

Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)

Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago ) 

\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)

1 tháng 2 2021

                               A B C H

Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)

\(\Rightarrow AH=4\left(cm\right)\)

Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )

Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)

\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)

\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )