\(\Delta\)ABC sao cho AB nhỏ nhất. Chứng minh rằng: \(\widehat{C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

ai bt thì giúp mik nha, mik nghĩ ra rùi nhưng sợ sai nên ko giám viết vô bài , ai xong tr mik sẽ

Theo mik là phải chia 3 trường hợp

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

26 tháng 2 2017

mình chịu

26 tháng 2 2017

bạn làm được câu nào thì làm

Ta có: \(\widehat{BAM}=\widehat{B}\)

mà hai góc này ở vị trí so le trong

nên AM//BC

Ta có: \(\widehat{CAN}=\widehat{C}\)

mà hai góc này ở vị trí so le trong

nên AN//BC

Ta có: AM//BC

AN//BC

AM,AN có điểm chung là A

Do đó: A,M,N thẳng hàng

28 tháng 6 2020

Bài làm

a) Xét tam giác ABM có:

MK là đường trung trực

=> MB = MA ( tính chất đường trung trực )

=> Tam giác ABM cân tại M

b) Vì MK vuông góc AB 

CB vuông góc AB 

=> MK // CB

=> ^AMK = ^MCB ( đồng vị ).         (1)

Vì tam giác ABM cân tại M

Mà MK là trung trực

=> MK là phân giác

=> ^AMK = ^BMK.         (2)

Từ (1) và (2) => ^BMK = ^MCB.         (3)

Vì tam giác BMK vuông tại K

=> ^BMK + ^MBK = 90°

Vì tam giác ABC vuông tại A

=> ^MBK + ^MBC = 90°

=> ^BMK = ^MBC.       (4)

Từ (3) và (4) => ^MBC = ^MCB 

28 tháng 6 2020

bài làm

c) Xét tam giác BIA có:

AH vuông góc với BI

IK vuông góc với AB

Mà AH và IK cắt nhau ở M

=> M là trực tâm

=> BM vuông góc với IA ( đpcm )

d) Xét tam giác HMB và tam giác EMA có:

^MHB = ^MEA = 90°

Cạnh huyền: BM = AM ( cmt )

Góc nhọn: ^HMB = ^EMA ( đối )

=> Tam giác HMB = tam giác EMA ( ch-gn )

=> HM = ME

=> Tam giác MHE cân tại M

=> ^MHE = ^MEH

Xét tam giác MHE có:

^HME + ^MHE + ^MEH = 180°

=> ^HME + 2^MHE = 180°

=> 2^MHE = 180° - ^HME.    (5)

Xét tam giác ABM cân tại M có:

^BMA + ^MBA + ^MAB = 180°

=> ^BMA + 2^MAB = 180°

=> 2^MAB = 180° - ^BMA.       (6)

Mà ^HME = ^BMA ( đối ).        (7)

Từ (5) và (6) và (7) => 2^MHE = 2^MAB

                                  => ^MHE = ^MAB

Mà hai góc này ở vị trí so le le trong

=> HE // AB

10 tháng 5 2019

a) Vì góc BAC+BCA+ABC=180 độ

mà BAC=80 độ ;ABC=60 độ

=>BCA=180 độ-(BAC+ABC)

=180 độ-140 độ

=40 độ

Vì BAC ,BCA,ABC lần lượt đối diện với BC,BA,AC

mà BAC>ABC>BCA=>BC>AC>BA

b)Xét tam giác ABE và tam giác DBE ta có :

BK=BD

BE chung

góc KBE =góc DBE

Do đó tam giác ABE=tam giác DBE(c-g-c)

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)