K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

hình như sai đầu bài r bn, đáng là DE song song vs BC 

xét tg ABC có: 

AD=DB ( gt )

AE=EC ( gt )

=> DE là đường trung bình của tg ABC 

=> DE sog sog BC ( tính chất đg trung bình )

=> DE= BC: 2 (  ___________________) 

30 tháng 6 2018

undefined

30 tháng 6 2018

F A B C D E

Trên tia đối của ED lấy F sao cho DE = FE

+) Xét ΔEAD và ΔECF có :

EA = EC ( E là trung điểm của AC )

\(\widehat{AED}=\widehat{FEC}\) ( đối đỉnh )

ED = EF ( gt )

=> ΔEAD = ΔECF ( c.g.c )

\(\Rightarrow\widehat{EAD}=\widehat{ECF}\) ( 2 góc tương ứng ) ; mà 2 góc ở vị trí so le trong

=> AB // CF => \(\widehat{BDC}=\widehat{FCD}\) ( 2 góc so le trong )

+) AD = CF ( ΔEAD = ΔECF )

mà AD = BD ( D là trung điểm AB )

=> CF = BD

+) Xét ΔBDC và FCD có :

BD = FC ( cmt )

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

DC là cạnh chung

=> ΔBDC = ΔFCD ( c.g.c )

\(\widehat{BCD}=\widehat{FDC}\) ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong => DE // BC

+) Ta có : ED = EF ( gt ) => E là trung điểm DF
=> \(DE=\dfrac{1}{2}DF=\dfrac{DF}{2}\)

mà DF = BC ( ΔBDC = ΔFCD )

\(\Rightarrow DE=\dfrac{BC}{2}\)

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

5 tháng 1 2019

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

13 tháng 12 2015

Xét 2 tam giác AIE và tam giác DCE ta có: EI=ED(gt);AE=EC(vì E là trung điem của AC); góc AEI=góc  DEC(vì 2 góc đoi đinh)=>tam giác AIE=tam giác DCE(c.g.c)=>AI=DC(2 cạnh tương ứng)

6 tháng 3 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Lê Xuân Huy - Toán lớp 7 - Học toán với OnlineMath

+) Để DE = BC thì AI = AK. Vậy tam giác ABC có trung tuyến đồng thời là đường cao nên tam giác ABC là tam giác vuông cân.