Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BAC}=180^0-80^0-40^0=60^0\)
\(\widehat{CAD}=\dfrac{60^0}{2}=30^0\)
=>\(\widehat{ADC}=180^0-30^0-40^0=110^0\)
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
A) XÉT \(\Delta ABC\)
CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)
THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)
\(\widehat{ACB}=180^0-85^0-40^0\)
\(\widehat{ACB}=55^0\)
\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)
\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)
B) TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)
THAY SỐ: \(40^0+\widehat{CBE}=180^0\)
\(\widehat{CBE}=180^0-40^0\)
\(\widehat{CBE}=140^0\)
TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)
THAY SỐ: \(85^0+\widehat{DAC}=180^0\)
\(\widehat{DAC}=180^0-85^0\)
\(\widehat{DAC}=95^0\)
XÉT \(\Delta CBE\)
CÓ: \(\widehat{CBE}=140^0\)
\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)
MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)
\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)
\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)
XÉT \(\Delta ACD\)
CÓ: AC =AD ( GT)
\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)
\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT)
MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)
\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)
THAY SỐ: \(2\widehat{D}+95^0=180^0\)
\(\widehat{D}=\left(180^0-95^0\right):2\)
\(\widehat{D}=42,5^0\)
XÉT \(\Delta BCD\)
CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)
\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)
TỪ (1) ; (2) \(\Rightarrow CE>CB>CD\)
MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS
CHÚC BN HỌC TỐT!!!!!!
a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)
=> \(60^0+\widehat{BOC}=90^0\)
=> \(\widehat{BOC}=90^0-60^0\)
=> \(\widehat{BOC}=30^0\) (1)
Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)
=> \(30^0+\widehat{COD}=60^0\)
=> \(\widehat{COD}=60^0-30^0\)
=> \(\widehat{COD}=30^0\) (2)
Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)
=> OC là tia phân giác của \(\widehat{BOD}.\)
Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)
=> \(30^0+\widehat{AOD}=60^0\)
=> \(\widehat{AOD}=60^0-30^0\)
=> \(\widehat{AOD}=30^0\).
Vì \(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)
=> OD là tia phân giác của \(\widehat{AOC}.\)
b) Vì OB là tia phân giác của \(\widehat{DOE}\)
=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)
Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)
=> \(30^0+60^0=\widehat{COE}\)
=> \(\widehat{COE}=90^0.\)
=> \(OC\perp OE\left(đpcm\right).\)
Chúc bạn học tốt!