GT | △ABC,DB=DA,DG//BC,GH//AB |
KL | △△△△△△△△△△△△△△ |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
Ta có: ΔHDA vuông tại H
mà HD là đường trung tuyến
nên DA=DH
c: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tai G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)
A C B E H D F
a)
+) Vì \(\widehat{ABE}\) là góc ngoài của \(\Delta ABC\) tại đỉnh \(C\) nên nó bằng tổng hai góc trong không kề với nó :
\(\Rightarrow\)\(\widehat{ABE}=\widehat{BAC}+\widehat{C}=80^0+40^0=120^0\)
+) Vì \(AE//BD\)\(\left(GT\right)\) nên \(\widehat{AEB}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{180^0-\left(80^0+40^0\right)}{2}=30^0\) ( kề bù )
+) \(\widehat{EAB}=180^0-\left(\widehat{ABE}+\widehat{AEB}\right)=180^0-\left(120^0+30^0\right)=30^0\)
b) ( hình vẽ trên đây ko đúng nên nhìn hơi khó nhé, thông cảm -,- )
Xét 2 tam giác vuông EBH và ABH có :
\(\widehat{HEB}=\widehat{HAB}\) ( câu a mới CM r )
\(HB\) là cạnh góc vuông chung
Do đóa : \(\Delta EBH=\Delta ABH\) ( cạnh huyền - góc nhọn )
Vậy \(\Delta EBH=\Delta ABH\) ( đpcm )
c) Vì \(AF//BC\)\(\left(GT\right)\) nên \(\widehat{FBC}=\widehat{AFB}\) ( kề bù )
Mà \(\widehat{ABF}=\widehat{FBC}\) nên \(\widehat{ABF}=\widehat{AFB}\)
\(\Rightarrow\)\(\Delta ABF\) cân tại \(A\)
\(\Rightarrow\)\(AB=AF\) ( 2 cạnh bên )
Vậy \(AB=AF\) ( đpcm )
Đay lè p!
Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
=>EF=BD=AD
b: Xét ΔADE và ΔEFC có
AD=EF
góc ADE=góc EFC
DE=FC
Do đó: ΔADE=ΔEFC
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
=>EA=EC
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=BC/2
Bạn tự vẽ hình nha!!!
a.)Xét\(\Delta ABD\)và\(\Delta ABM\)có:
\(AD=BM\)
\(AB:\)Chung
\(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)
\(\Rightarrow\Delta ABD=\Delta BAM\)
b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)
\(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)
\(\Rightarrow AM//BD\)
c.)Xét\(\Delta ADI\)và\(\Delta IMC\)có:
\(AD=CM\)
\(\widehat{DAI}=\widehat{IMC}\)
\(AI=IM\)
\(\Rightarrow\Delta AID=\Delta IMC\)
\(\Rightarrow IA=IC\)
\(\Rightarrow I\)là trung điểm của\(AC\)
\(\Rightarrow I,A,C\)thẳng hàng(đpcm)
P/s:#Study well#