K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2022

a: vecto DE

=vecto DA+vecto AE

=-2vecto AB+2/5*vecto AC

vecto DG=vecto DB+vecto BG

=-2*vecto AB-vecto GB

=-2vecto AB-(-vecto GA-vecto GC)

=-2 vecto AB-(vecto CG-vecto GA)

=-2vecto AB-(vecto CG+vecto AG)

=-2vecto AB+vecto GA+vecto GC

=-2*vecto AB+2*vecto GF

=-2vecto AB+2*1/3*vecto BF

=-2*vecto AB+2/3(vecto BA+vecto BC)

=-2vecto AB-2/3vecto AB+2/3*veto BC

=-8/3vecto AB+2/3*(vecto BA+vecto AC)

=-10/3vecto AB+2/3vecto AC

b: vecto DE=-2vecto AB+2/5vecto AC

vecto DG=-10/3vecto AB+2/3*vecto AC

Vì \(\dfrac{-2}{-\dfrac{10}{3}}=2:\dfrac{10}{3}=\dfrac{6}{10}=\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{2}{3}\)

nên D,E,G thẳng hàng

27 tháng 7 2019
https://i.imgur.com/Ofq4upt.jpg
NV
23 tháng 8 2020

\(\overrightarrow{DE}=\overrightarrow{DA}+\overrightarrow{AE}=-2\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-2\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{5}{6}\left(-2\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{DG}=\frac{5}{6}\overrightarrow{DE}\Rightarrow\overrightarrow{DE}=\frac{6}{5}\overrightarrow{DG}\Rightarrow x=\frac{6}{5}\)

NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3

a: vecto AB+vecto AC

=vecto AB+vecto AB+vecto AD

=2 vecto AB+vecto AD

=2(vecto AH+vecto HB)+vecto AG+vecto GD

=2vecto AH+2 vecto HB+vecto AG+vecto GD

=2 vecto AH+vecto AG+vecto GB+vecto GD

=2 vecto AH+vecto AG

b: Xét tứ giác AHCG có

O là trung điểm chung của CA và HG

nên AHCG là hình bình hành

Suy ra: AH//CG

Xét ΔDHC có

G là trung điểm cua rDH

GN//HC

Do đó: N là trung điểm của DC

Xét ΔBGC có

H là trung điểm của BG

HM//GC

Do đó: M là trung điểm của BC

\(\overrightarrow{AM}+\overrightarrow{AN}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\)

=3/2 vecto AC

2 tháng 8 2019

A B C E D G

\(\text{a) Ta có : }2\overrightarrow{CD}=3\overrightarrow{DB}\\ \Rightarrow\overrightarrow{DC}=-\frac{3}{2}\overrightarrow{DB}\\ \Rightarrow D;B;C\text{ thẳng hàng },D\text{ nằm giữa }B;C\left(\frac{3}{2}< 0\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{BD}+\overrightarrow{DC}=\overrightarrow{BD}+\frac{3}{2}\overrightarrow{BD}=\frac{5}{2}\overrightarrow{BD}\\ 5\overrightarrow{EB}=2\overrightarrow{EC}\\ \Rightarrow\overrightarrow{EB}=\frac{2}{5}\overrightarrow{EC}\\ \Rightarrow E;B;C\text{ thẳng hàng },B\text{ nằm giữa }E;C\left(\frac{2}{5}>0;EB< EC\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{EC}-\overrightarrow{EB}=\overrightarrow{EC}-\frac{2}{5}\overrightarrow{EC}=\frac{3}{5}\overrightarrow{EC}\)

\(\Rightarrow\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}-\frac{2}{5}\overrightarrow{AB}=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\overrightarrow{AE}=\overrightarrow{EC}+\overrightarrow{CA}\\ =\frac{5}{3}\overrightarrow{BC}-\overrightarrow{AC} =\frac{5}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)-\overrightarrow{AC}\\ =\frac{5}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}-\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}\)

\(b\text{) Theo tính chất trọng tâm }\Delta:3\overrightarrow{AG}=\overrightarrow{AA}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\overrightarrow{0}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\left(\frac{9}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}\right)-\left(\frac{1}{2}\overrightarrow{AC}+\frac{5}{4}\overrightarrow{AC}\right)\\ =\frac{15}{4}\left(\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\right)-\frac{3}{4}\left(\frac{2}{3}\overrightarrow{AC}+\frac{5}{3}\overrightarrow{AC}\right)\\ =\frac{15}{4}\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AE}\)

2 tháng 8 2019

\(\Rightarrow\overrightarrow{AG}=\frac{5}{4}\overrightarrow{AD}-\frac{1}{4}\overrightarrow{AE}\)