Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C E D F H
a) Xét \(\Delta ABC,\Delta ADE\) có :
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)
=> DE = BC (2 cạnh tương ứng)
b)Từ \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)
Suy ra : \(\widehat{EDA}=\widehat{CBA}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
Nên : DE // BC (đpcm)
c) Xét \(\Delta AEH,\Delta AFH\) có :
\(EH=FH\left(gt\right)\)
\(\widehat{AHE}=\widehat{AHF}\left(=90^{^O}\right)\)
\(AH:Chung\)
=> \(\Delta AEH=\Delta AFH\left(c.g.c\right)\)
=> \(AE=AF\) (2 cạnh tương ứng) (1)
Mà theo giả thiết có : \(AE=AC\) (2)
Từ (1) và (2) => \(AF=AC\left(=AE\right)\)
=> đpcm
Bài 1:
a: Xét ΔCAB và ΔCDE có
CA=CD
góc ACB=góc DCE
CB=CE
Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có
C là trung điểm chung của AD và BE
nên ABDE là hình bình hành
Suy ra: AB//DE
c: Xét tứ giác BEDF có
BE//DF
BF//DE
Do đó: BEDF là hình bình hành
Suy ra: BE=DF
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AF
b) AD < BC
c) Ba điểm E, D, F thẳng hàng
E D B C A H a,Xét \(\text{ΔABC}\)và \(\text{ΔADE}\) có
\(\left\{{}\begin{matrix}\text{AC=AE(gt)}\\\widehat{DAE}=\widehat{BAC}\\\text{AB=AD(gt)}\end{matrix}\right.\Rightarrow\text{ΔABC=ΔADE(c.g.c)}\)
\(\Rightarrow DE=BC\)( 2 cạnh tương ứng )
b, Ta có \(\text{ΔABC=ΔADE}\)\(\Rightarrow\widehat{CBA}=\widehat{EDA}\)
và so le trong
\(\Rightarrow\text{DE // BC }\)
c, Xét \(\text{ΔAEH}\)và \(\text{ΔAFH}\)
\(\text{AH:Chung}\)
\(\text{AHEˆ=AHFˆ}\)
\(\text{EH=FH}\)
\(\Rightarrow\text{ΔAEH=ΔAFH(c.g.c)}\)
\(\Rightarrow\text{AE=AF}\)
Mà \(\text{AE=AC}\)
\(\Rightarrow\text{AF=AC(=AE)}\)