\(\Delta\)ABC có ba góc nhọn ,trên tia đối của tia AB lấy điểm D sao cho AD = AB .Trê...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

E D B C A H a,Xét \(\text{ΔABC}\)\(\text{ΔADE}\)

\(\left\{{}\begin{matrix}\text{AC=AE(gt)}\\\widehat{DAE}=\widehat{BAC}\\\text{AB=AD(gt)}\end{matrix}\right.\Rightarrow\text{ΔABC=ΔADE(c.g.c)}\)

\(\Rightarrow DE=BC\)( 2 cạnh tương ứng )

b, Ta có \(\text{ΔABC=ΔADE}\)\(\Rightarrow\widehat{CBA}=\widehat{EDA}\)

và so le trong

\(\Rightarrow\text{DE // BC }\)

c, Xét \(\text{ΔAEH}\)\(\text{ΔAFH}\)

\(\text{AH:Chung}\)

\(\text{AHEˆ=AHFˆ}\)

\(\text{EH=FH}\)

\(\Rightarrow\text{ΔAEH=ΔAFH(c.g.c)}\)

\(\Rightarrow\text{AE=AF}\)

\(\text{AE=AC}\)

\(\Rightarrow\text{AF=AC(=AE)}\)

16 tháng 12 2024

ko một ai....

 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
30 tháng 1 2018

B A C E D F H

a) Xét \(\Delta ABC,\Delta ADE\) có :

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\) (đối đỉnh)

\(AC=AE\left(gt\right)\)

=> \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)

=> DE = BC (2 cạnh tương ứng)

b)Từ \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)

Suy ra : \(\widehat{EDA}=\widehat{CBA}\) (2 góc tương ứng)

Mà thấy : 2 góc này ở vị trí so le trong

Nên : DE // BC (đpcm)

c) Xét \(\Delta AEH,\Delta AFH\) có :

\(EH=FH\left(gt\right)\)

\(\widehat{AHE}=\widehat{AHF}\left(=90^{^O}\right)\)

\(AH:Chung\)

=> \(\Delta AEH=\Delta AFH\left(c.g.c\right)\)

=> \(AE=AF\) (2 cạnh tương ứng) (1)

Mà theo giả thiết có : \(AE=AC\) (2)

Từ (1) và (2) => \(AF=AC\left(=AE\right)\)

=> đpcm

Bài 1: 

a: Xét ΔCAB và ΔCDE có

CA=CD

góc ACB=góc DCE

CB=CE

Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có

C là trung điểm chung của AD và BE

nên ABDE là hình bình hành

Suy ra: AB//DE

c: Xét tứ giác BEDF có

BE//DF

BF//DE

Do đó: BEDF là hình bình hành

Suy ra: BE=DF

4 tháng 2 2019

Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AF

b) AD < BC

c) Ba điểm E, D, F thẳng hàng