K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

A B C H D E

Xét tam giác ABH và tam giác ACH có : AH chung

AB = AC (gt)

góc AHB = góc AHC = 90 (gt)

=> tam giác ABH = tam giác ACH (ch-cgv)

=> HB = HC (đn)

b, HB = HC 

HB + HC = BC mà BC = 8 

=> HB = 8 : 2 = 4

xét tam giác ABH vuông tại H

=> AB^2 = AH^2 + HB^2 (đl Pytago)

AB = 5 ; HB = 4 (gt)

=> 5^2 = AH^2 + 4^2

=> AH^2 = 25 - 16

=> AH^2 = 9

=> AH = 3 do AH > 0

c, hỏi gì

1. a) Vì \(\Delta ABC\) cân tại A có AH là đường cao ( AH \(\perp\) BC )

\(\Rightarrow\) Ah là trung tuyến ;AH là phân giác

\(\Rightarrow BH=CH;\widehat{BAH}=\widehat{CAH}\)

b) Có \(BH=CH=\frac{BC}{2}=\frac{8}{2}=4cm\)

Xét \(\Delta ABH\) vuông tại H

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3cm\)

c) Xét \(\Delta ADH\)\(\Delta AEH\)có :

\(\widehat{DAH}=\widehat{EAH}\) (\(\Delta ABC\) cân tại A)

\(AH:chung\)(cm câu a)

\(\widehat{ADH}=\widehat{AEH}=90^o\)

=>\(\Delta ADH\) ​= \(\Delta AEH\)(cạnh huyền -góc nhọn)

=> AD = AE (2 cạnh tương ứng)

=> \(\Delta ADE\) cân tại A.

\(\Delta ADE\) cân tại A. \(\Rightarrow\widehat{ADE}=\widehat{AED}=180^o-\widehat{DAE}\) (1)

\(\Delta ABC\) cân tại A. \(\Rightarrow\widehat{ABC}=\widehat{ACB}=180^o-\widehat{BAC}\) (2)

từ ( 1 ) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\) mà 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow DE//BC\)

27 tháng 3 2022

Xét \(\Delta ADH\) và Δ A E H có : \(\widehat{DAH}=\widehat{EAH}\) (\(\Delta ABC\) cân tại A) \(AH:chung\)(cm câu a) \(\widehat{ADH}=\widehat{AEH}=90^o\)

12 tháng 2 2018

A B C D E H 8

a) Xét \(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)

\(AB=AC\) (ΔABC cân tại A)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}BH=HC\text{(2 cạnh tương ứng)}\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

=> đpcm

b) Ta có : \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H có :

\(AH^2=AB^2-BH^2\) (định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3 \left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (ΔABC cân tại A)

\(BH=CH\left(cmt\right)\)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> \(\Delta DBH=\Delta ECH\) (cạnh huyền - góc nhọn)

=> \(HD=HE\)(2 cạnh tương ứng)

Do đó: ΔHDE cân tại H (đpcm)

13 tháng 2 2018

thanks bạn iu

15 tháng 4 2018

( hình bn tự vẽ )

Giải

Xét ΔAHB và ΔAHC có

AH là cạnh chung

góc AHB = góc AHC =90o ( AH⊥BC )

AB=AC ( ΔABC cân tại A )

=> ΔAHB = ΔAHC (ch_cgv)

=> HB=HC ( 2 cạnh tương ứng )

Vậy HB=HC

b) Ta có HB = HC ( theo câu a)

=> H là trung điểm BC => HB=HC = 1/2 BC

MÀ BC = 8cm( gt) => HB=HC = 1/2 . 8=4 ( cm )

Xét ΔAHB vuông tại H

=> AB2 = HA2+HB2 ( định lý Pi-ta-go)

THay số ta có

52=AH2 + 42

=> AH2 = 52-42

=> AH2=9

=> AH = √9=3 ( AH>0)

Vậy AH=3cm

c)Do AH là tia phân giác của góc BAC

MÀ HD⊥AB , HE⊥AC

=> HD=HE ( tính chất )

=> ΔHDE cân tại H

Vậy ΔHDE cân tại H

26 tháng 2 2018

A B C H D E

a) Xét \(\Delta ABC\) có :

AB = AC (gt)

=> \(\Delta ABC\) cân tại A

\(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :

\(AH^2=AB^2-BH^2\) (Định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)

\(BH=CH\)(cm câu a)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> ​\(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)

=> \(HD=HC\) (2 cạnh tương ứng)

=> \(\Delta HDE\) cân tại H.

9 tháng 2 2019

mong các bạn giúp mình nhanh ạ

9 tháng 2 2019

A B C 5 5 8 H D E

Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A 

                            <=> góc B = góc C

Xét t/giác ABH và t/giác ACH

có góc BHA = góc CHA = 900 (gt)

  AB = AC = 5 cm (gt)

góc B = góc C (cmt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> BH = CH (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)

Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)

=> AB2 = AH2 + BH2

=> AH2 = 52 - 4 = 9 = 32

=> AH = 3 (cm)

c) Xét t/giác ADH và t/giác AEH

có góc ADH = góc AEH = 900(gt)

   AH : chung

góc DAH = góc EAH (cmt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> HD = HE (hai cạnh tương ứng)

=> t/giác HDE là t/giác cân tại H 

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak
12 tháng 2 2017

A B C H E D

a) tg AHB và tg AHC: AHB^ = AHC^ = 90o; AB = AC; AH chung

=> tg AHB = tg AHC (ch_cgv)

=> HB = HC (2 cạnh t/ứng) ; BAH^ = CAH^ (2 góc t/ứng)

b) BC= BH + HC = 2HC = 8 => HC = BC/2 = 4 (cm)

tg AHC: \(AH=\sqrt{AC^2-HC^2}=\sqrt{25-16}=3\left(cm\right)\)

c) tg ADH và tg AEH: ADH^ = AEH^ = 90o; AH chung; ADH^ = EAH^

=> tg ADH = tg AEH (ch_gn)

=> AD =AE (2 cạnh t/ứng)

Vậy tg DAE cân tại A (AD = AE)