Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
Hình thì chú tự vẽ nhá
d) Xét tam giác AEF có AE = AF ( chứng minh phần c ) nên tam giác AEF cân tại A
Nên \(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{EAF}}{2}\)
Xét \(\Delta BNE\)và \(\Delta CIF\)có :
\(\widehat{BNE}=\widehat{CIF}=90^o;BE=CF;\widehat{AEF}=\widehat{AFE}\)
Khi đó \(\Delta BNE=\Delta CIF\)( cạnh huyền góc nhọn )
Nên \(NE=IF\)(hai cạnh tương ứng )
Ta có \(AN+NE=AE;AI+IF=AF\)mà \(AE=AF;NE=IF\)nên \(AN=AI\)
Xét tam giác ANI có AN = AI nên tam giác ANI cân tại A nên \(\widehat{ANI}=\widehat{AIN}=\frac{180^o-\widehat{NAI}}{2}\)
Khi đó \(\widehat{ANI}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)mà hai góc này nằm ở vị trí đồng vị của NI và EF cắt bởi AE nên theo dấu hiệu nhận biết hai đường thẳng song song ta có \(NI//EF\)
Vậy....
A E F B C M N I
a) Xét ha tam giác ABM và ACM có:
\(\hept{\begin{cases}BM=MC\left(gt\right)\\AM:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)}\)
b) Ta có: AB = AC => tam giác ABC cân tại A
Tam giác cân ABC có AM là đường trung tuyến
Nên cũng đồng thời là đường cao
Suy ra: AM vuông góc với BC
c) Ta có: Tam giác ABC cân tại A => \(\widehat{ABM}=\widehat{ACM}\)
Mà \(\widehat{ABM}+\widehat{ABE}=180^0\)
\(\widehat{ACM}+\widehat{ACF}=180^0\)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)
Xét hai tam giác ABE và ACF có:
\(\hept{\begin{cases}BE=CF\\\widehat{ABE}=\widehat{ACF}\\AB=AC\end{cases}\Rightarrow\Delta ABE}=\Delta ACF\left(c-g-c\right)\)
d) Ta có: AE = AF (cmt)
=> Tam giác AEF cân tại A
Suy ra: \(\widehat{AFE}=\widehat{AEF}=\frac{180^0-\widehat{EAF}}{2}\) (1)
Xét hai tam giác vuông BNE và CIF: \(\hept{\begin{cases}BE=CF\\\widehat{E}=\widehat{F}\end{cases}\Rightarrow\Delta BNE=\Delta CIF}\) (cạnh huyền -góc nhọn)
=> NE = IF
Ta có: AE = AF (Gt); NE = IF (cmt)
=> AE - NE = AF - IF
=> AN = AI
=> Tam giác ANI cân tại I
Suy ra: \(\widehat{ANI}=\widehat{AIN}=\frac{180^0-\widehat{EAF}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AIN}=\widehat{AFE}\)
Mà hai góc này ở vị trí đồng vị
Nên NI // EF
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔABM=ΔDCM
b: ΔABM=ΔDCM
nên góc ABM=góc DCM
=>AB//DC
c: ΔABC cân tại A
mà MA là trung tuyến
nên AM vuông góc với BC
A B C E D
a) Xét \(\Delta ABE\) và \(\Delta DCE\) có :
BE = EC (E là trung điểm của BC -gt)
\(\widehat{AEB}=\widehat{DEC}\) (đối đỉnh)
AE = ED (gt)
=> \(\Delta ABE\) = \(\Delta DCE\) (c.g.c)
b) Ta có : \(\widehat{CDE}=\widehat{BAE}\) (2 góc tương ứng - \(\Delta ABE\) = \(\Delta DCE\) )
Mà 2 góc này ở vị trí so le trong
=> AB //DC (đpcm)
c) Theo giả thuyết thì ta có :
Trong tam giác ABC có : \(AB=AC\)
=> \(\Delta ABC\) cân tại A
Mà AE là đường trung tuyến trong tam giác
=> AE đồng thời là đường trung trưc trong tam giác
=> \(AE\perp BC\) (đpcm)
d) Để \(\widehat{ADC}=45^o\)
<=> \(\Delta ABC\) vuông cân tại A
giống bài mình quá bạn ơi !