Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)
\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow5-BC^2=-2\)
\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)
b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)
\(\Leftrightarrow125-BC^2=50\)
hay \(BC=5\sqrt{3}\left(cm\right)\)
c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)
\(\Leftrightarrow7-BC^2=4\sqrt{3}\)
hay \(BC=2-\sqrt{3}\left(cm\right)\)
Không mất tính tổng quát ta chuẩn hóa \(AB=1\).
Dễ dàng suy ra \(AC=\sqrt{3},BC=2\).
\(AB+BM=AC+CM\)
\(\Leftrightarrow1+2-CM=\sqrt{3}+CM\)
\(\Leftrightarrow CM=\frac{3-\sqrt{3}}{2}\Rightarrow BM=\frac{1+\sqrt{3}}{2}\)
Kẻ \(AH\)vuông góc với \(BC\).
Suy ra \(BH=\frac{AB^2}{BC}=\frac{1^2}{2}=\frac{1}{2}\)
\(\Rightarrow MH=\frac{\sqrt{3}}{2}\)mà \(AH=\frac{AB.AC}{BC}=\frac{\sqrt{3}}{2}\)
suy ra \(MH=AH\)suy ra \(\Delta MAH\)vuông cân tại \(H\)
suy ra \(\widehat{AMH}=45^o\)
mà \(\widehat{AMH}=\widehat{ACM}+\widehat{CAM}\Leftrightarrow\widehat{CAM}=\widehat{AMH}-\widehat{ACM}=45^o-30^o=15^o\).
\(\text{Hình bạn tự vẽ ^_^}\)
\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)
\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)
\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)
\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)
\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)
\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)
\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)
\(\widehat{DMC}=\widehat{BAC}=90^o\)
\(\widehat{C}\text{ là góc chung}\)
\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)
\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)
\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)
a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)
b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)
c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)
d,Cái này bạn tự tính nhá
Mk hơi lười nên làm hơi tắt có j thông cảm mk nha
kẻ AH vuông góc BC
có B = 600nên BH=\(\frac{1}{2}AB=8cm\)
ta có AH2=AC2-CH2=AB2-HB2
=>162-82=142-CH2
=>192=196-CH
=>CH=2cm
BC=CH+HB=2+8=10cm
tick nha