Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ABCHKIEF
a)
Xét \(\Delta\)ABC và \(\Delta\)HBA có:
^BAC = ^BHA ( = 90 độ )
^ABC = ^HBA ( ^B chung )
=> \(\Delta\)ABC ~ \(\Delta\)HBA
b) AB = 3cm ; AC = 4cm
Theo định lí pitago ta tính được BC = 5 cm
Từ (a) => \(\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow BH=\frac{AB^2}{BC}=1,8\)m
c) Xét \(\Delta\)AHC và \(\Delta\)AKH có: ^AKH = ^AHC = 90 độ
và ^HAC = ^HAK ( ^A chung )
=> \(\Delta\)AHC ~ \(\Delta\)AKH
=> \(\frac{AH}{AK}=\frac{AC}{AH}\Rightarrow AH^2=AC.AK\)
d) Bạn kiểm tra lại đề nhé!
A B C M F E
a)Xét tam giác ABC và tam giác MBA có:
góc BAC = góc BMA(=90o do AM là đường cao và tam giác ABC vuông)
Góc ABC chung
=>\(\Delta ABC\infty\Delta MBA\)(g.g)(1)
b)Xét tam giác ABC và tam giác MAC có:
Góc ACB chung
góc BAC = góc AMC(=900)
=>\(\Delta ABC\infty\Delta MAC\)(g.g)(2)
Từ 1 và 2 =>\(\Delta MBA\infty\Delta MAC\) hay \(\Delta AMB\infty\Delta CMA\)
c)\(\Delta AMB\infty\Delta CMA\)=>\(\dfrac{AM}{CM}=\dfrac{BM}{AM}\)
=>AM2=BM.CM
Mà BM+CM=BC,BC=15cm BM=6cm=>CM=9cm
=>AM2=6.9=54
=>AM=\(3\sqrt{6}\)(cm)
Áp dụng định lí pytago cho tam giác AMB ta có:
AB2=AM2+BM2=54+62=90
=>AB=\(3\sqrt{10}\)(cm)
d)SAFC=1/2 SABC(chung đường cao từ A đáy FC=1/2 BC do F nằm trên trung trực BC và F thuộc BC)
Ta có:FB=FB=\(\dfrac{BC}{2}=7,5\left(cm\right)\)
AM//FE do cùng vuông góc với BC
=>\(\dfrac{CF}{CM}=\dfrac{CE}{CA}\)
=>\(\dfrac{CE}{CA}=\dfrac{7,5}{9}=\dfrac{5}{6}\)
=>SEFC=\(\dfrac{5}{6}\)SAFC(chung đường cao từ F và EC=\(\dfrac{5}{6}CA\))
=>SEFC=(\(\dfrac{5}{6}\cdot\dfrac{1}{2}\))SABC=\(\dfrac{5}{12}\)SABC
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
suy ra: \(\Delta ABC~\Delta HBA\) (g.g)
b) Xét \(\Delta AIH\)và \(\Delta AHB\)có:
\(\widehat{AIH}=\widehat{AHB}=90^0\)
\(\widehat{IAH}\) chung
suy ra: \(\Delta AIH~\Delta AHB\) (g.g)
\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AI.AB=AH^2\) (1)
Xét \(\Delta AHK\)và \(\Delta ACH\)có:
\(\widehat{HAK}\)chung
\(\widehat{AKH}=\widehat{AHC}=90^0\)
suy ra: \(\Delta AHK~\Delta ACH\) (g.g)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)
\(\Rightarrow\)\(AK.AC=AH^2\) (2)
Từ (1) và (2) suy ra: \(AI.AB=AK.AC\)
c) \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2
Tứ giác \(HIAK\)có: \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)
\(\Rightarrow\)\(HIAK\)là hình chữ nhật
\(\Rightarrow\)\(AH=IK=4\)cm
Ta có: \(AI.AB=AK.AC\) (câu b)
\(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)
Xét \(\Delta AIK\)và \(\Delta ACB\)có:
\(\widehat{IAK}\)chung
\(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)
suy ra: \(\Delta AIK~\Delta ACB\) (c.g.c)
\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)
\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
A B C H I K
a, bạn tự làm nhé
b, Xét tam giác ABH và tam giác CAH ta có
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)
c, mình làm hơi tắt nhé, bạn dùng tỉ lệ thức xác định tam giác đồng dạng nhé
Dễ có : \(AH^2=AK.AC\)(1)
\(AH^2=AI.AB\)(2)
Từ (1) ; (2) suy ra : \(AK.AC=AI.AB\Rightarrow\frac{AK}{AB}=\frac{AI}{AC}\)
Xét tam giác AIK và tam giác ACB
^A _ chung
\(\frac{AK}{AB}=\frac{AI}{AC}\)( cmt )
Vậy tam giác AIK ~ tam giác ACB ( c.g.c )
Hình Tự kẻ
Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE
Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E
Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC , suy ra MA.MC=MD.ME
Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC
A B C M D E
a, Xét tam giác ABC và tam giác DBE có :
góc B chung
góc BAC = góc BDE (=90độ )
Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )
b, Xét tam giác MAE và tam giác MDC có :
góc MAE = góc MDC ( = 90độ )
góc AME = góc DMC ( đối đỉnh )
Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )
\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)
\(\Rightarrow MA.MC=MD.ME\)
c,d : Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .
Học tốt
A B C K H I
a) Xét \(\Delta\) ABH và \(\Delta\)ACK
Ta có: Góc A chung
AB = AC
góc AHB = góc AKC ( =90o )
=> \(\Delta\)AKC = \(\Delta\)AHB ( ch-gn)
=> BH = CK
=> AK = AH
=>\(\dfrac{AK}{KB}\) = \(\dfrac{AH}{HB}\)
=> HK // BC
b) Xét \(\Delta\)IAC và \(\Delta\)HBC
Ta có : Góc I = Góc H (=900)
Góc C chung
=> \(\Delta\)IAC \(\infty\) \(\Delta\)HBC (g.g)
Xét \(\Delta\)AKH và \(\Delta\)ABC
Ta có:
\(\dfrac{AK}{AB}\) = \(\dfrac{AH}{AC}\) ( do HK // BC )
Góc A chung
=> \(\Delta\)AKH \(\infty\) \(\Delta\)ABC (c.g.c)
c) Tự thay vào làm nhé!!