Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHC và ΔHIC có:
ˆAHC=ˆHIC=90
ˆACH:chung
⇒ ΔAHC ∼ ΔHIC
⇒ AH/HI=HC/IC
⇔AH.IC=HC.HI
b)Có AH/HI=HC/IC ( cmt)
mà IH = 2HO ( O là trung điểm của HI);
BC= 2HC ( H là trung điểm của BC )
=> AH/2HO=BC/2IC
=> AH/HO=BC/IC(1)
Mặt khác ˆAHO=ˆICB( cùng phụ góc IHC ) (2)
Từ (1) và (2) => Δ BIC ∼ Δ AOH ( c.g.c)
c) Gọi D là giao điểm của AH và BI ; E là giao điểm của AO và BI
Vì ΔBIC ∼ Δ AOH (cmb) => ˆIBH=ˆHAO
Lại có ˆBDH=ˆADE ( đối đỉnh )
=>ˆIBH+ˆBDH=ˆHAO+ˆADE
mà ˆIBH+ˆBDH=90
⇒AO⊥BI(đpcm)
b, qua H kẻ HM//BI=> M là trung điểm IC
xét tam giác AHO và HCM
ta có AHO^ = HCM^
và HA/HO = 2HA/HI = 2AC/AH (do AIH ~ AHC)
CH/CM = 2CH/CI = 2AC/AH (do CHI ~ CAH)
=> AHO ~ HCM
=> HAO^ = CHM^ (*)
mà CHM^ = HBI^ (đồng vị) (**)
tỪ * và ** => HAO^ = HBI^ =>tứ giác BAOH nội tiếp
=> AHB^ = AIB^ = 90 hay AO vuông BI (đpcm)
Gọi N là trung điểm của EC => FN là đường trung bình của ∆HEC => FN // NC
Mà HC⊥AH nên FN⊥AH
∆AHN có hai đường cao HE và NF cắt nhau tại F nên F là trực tâm của tam giác => AF⊥HN (1)
∆ABC cân tại A nên AH là đường cao cũng là trung tuyến => BH = HC => HN là đường trung bình của ∆BEC => HN // BE (2)
Từ (1) và (2) suy ra AF⊥BE (đpcm)
a) Xét \(\Delta EDC\)và \(\Delta BAC\)
có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\)chung
nên \(\Delta EDC\)\(\Delta BAC\)(g - g)
\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)
Xét \(\Delta BEC\)và \(\Delta ADC\)
có \(\frac{EC}{CD}=\frac{BC}{AC}\)
\(\widehat{ACB}\)chung
nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)
Xét \(\Delta AHD\)
ta có AH = HD suy ra \(\Delta AHD\)cân tại H
mà \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H
suy ra \(\widehat{ADH}=45^0\)
Gọi giao điểm của AD và BE là O
Xét \(\Delta AOE,\Delta BOD\)
có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))
\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)
nên \(\Delta AOE\)\(\Delta BOD\)(g - g)
\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)
Xét \(\Delta ABE\)vuông tại A
có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A
suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)
b) Gọi giao điểm của AH và BE là I
dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)
có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)
\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)
Xét \(\Delta BHM\)và \(\Delta BEC\)
có \(\frac{BH}{BE}=\frac{BM}{BC}\)
\(\widehat{EBC}\)chung
nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)
\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)
mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))
\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)
dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)
\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)
c) có AK là phân giác \(\Delta ABC\)
nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)
dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)
\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)
từ (1) và (2) suy ra
\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)