K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔANB và ΔAMC có

AN=AM

góc BAN chung

AB=AC

=>ΔANB=ΔAMC

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có

MB=NC

góc MBC=góc NCB

BC chung

=>ΔMBC=ΔNCB

=>góc IBC=góc ICB

=>IB=IC

mà AB=AC

nen AI là trung trực của BC

=>A,I,D thẳng hàng

a: Xét ΔANB và ΔAMC có

AN=AM

góc A chung

AB=AC

Do đó: ΔANB=ΔAMC

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: góc ABI+góc IBC=góc ABC

góc ACI+góc ICB=góc ACB

mà góc ABI=góc ACI;góc ABC=góc ACB

nên góc IBC=góc ICB

=>ΔIBC cân tại I

=>I nằm trên trung trực của BC

mà AD là trung trực của BC

nên A,I,D thẳng hàng

5 tháng 3 2020

1 2 1 2 1 2 A M N B C I

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC

P/s : Nhờ check hộ ạ =))

6 tháng 3 2022

câu c là dòng nào ạ?

 

a: Xét ΔANB và ΔAMC có

AN=AM

\(\widehat{BAN}\) chung

AB=AC

Do đó: ΔANB=ΔAMC

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có 

MB=NC

MC=NB

BC chung

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

=>ΔIBC cân tại I

=>IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Ta có: DB=DC

nên D nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,D thẳng hàng

a: Xét ΔAMC và ΔANB có 

AM=AN

\(\widehat{MAC}\) chung

AC=AB

Do đó: ΔAMC=ΔANB

b: Ta có: ΔAMC=ΔANB

nên AM=AN

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

23 tháng 2 2022

còn câu c chị ơi

a: Xét ΔAMC và ΔANB có 

AM=AN

\(\widehat{MAC}\) chung

AC=AB

Do đó: ΔAMC=ΔANB

b: Ta có: ΔAMC=ΔANB

nên AM=AN

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có

MB=NC

BC chung

MC=NB

Do đó:ΔMBC=ΔNCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

=>IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Ta có: DB=DC

nên D nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,D thẳng hàng

25 tháng 5 2017

Chắc là bạn vẽ hình được!!

a)  Xét 2 tam giác AMH và NMB có:

            AM = MN  (giả thiết)

         \(\widehat{AMH}=\widehat{BMN}\) (hai góc đối đỉnh)

         BM = MH  (giả thiết)

=> \(\Delta\)AMH = \(\Delta\)NMB (c.g.c)

=> \(\widehat{MBN}=\widehat{MHA}=90^o\)(hai góc tương ứng) => \(NB⊥BC\)

b) Vì \(\Delta\)ABC cân tại A => \(\widehat{ABC}< 90^o\), mà \(\widehat{MBN}=90^o\) (cmt)

=> \(\widehat{ABC}< \widehat{MBN}\)

Xét \(\Delta ABN\), đường trung tuyến BM có \(\widehat{ABC}< \widehat{MBN}\)   => BN < BA.

c) Xét tứ giác ABNH có:  BM = MH (giả thiết)

                                     MN = AM (giả thiết)

    => tứ giác ABNH là hình bình hành (theo DHNB)

    => AM là tia phân giác \(\widehat{BAH}\)(tính chất của hình bình hành)

    => \(\widehat{BAM}=\widehat{MAH}\)

\(\Delta ABC\)cân tại A (giả thiết), AH là đường cao => \(AH⊥BC\) (1)=> AH cũng là đường trung tuyến => BH = HC.

 Xét \(\Delta BNC\)vuông tại B có, đường trung tuyến BI (giả thiết)

   => BI = IC (t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền trong tam giác vuông)

=> \(\Delta BIC\)cân tại I, mà BH = HC (cmt) => IH là đường trung tuyến của \(\Delta BIC\)cân

=> IH cũng là đường cao của \(\Delta BIC\)=> \(IH⊥BC\)(2)

Từ (1) và (2) => A, H, I thẳng hàng.

P/s: mình mất 45 phút để viết hết toàn bộ bài này!!

25 tháng 5 2017

Tự vẽ hình nha :

a) 

Xét tam giác AMH và tam giác NMB có :

AM = NM

BM = HM                           => \(\Delta AMH=\Delta NMB\)   (1)

Góc BMN = góc HMA

b) Từ 1 , ta suy ra :

AH = BN

Xét tam giác vuông AHB có AB là cạnh huyền 

=> AH < AB

Đồng thời BN < AB (Điều phải chứng minh)

c) Từ BN < AB

=> Góc BAM < góc BNA (Quan hệ góc và cạnh)

Mặt khác góc BNA = góc MAH (từ 1)

=> Góc BAM = Góc MAH

d) Nối BI lại 

Vì tam giác BNC vuông nên 

Với BI là đường trung tuyến thì 

BI = NI = IC

Xét tam giác ABI và tam giác ACI có :

BI = CI

AB = AC    => \(\Delta ABI=\Delta ACI\)

AI chung 

=> Góc BAI = Góc CAI

=> AI là đường phân giác của góc BAC  (a)

Mặt khác , tam giác ABC cân tại A và AH là đường cao 

=> AH cũng là đường phân giác  (b) 

Từ (a) và (b) 

=> A , H , I thẳng hàng

18 tháng 1 2023

1 2 1 1 2 1 2 A M N B C

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC