\(\Delta\)\(ABC\) cân tại A, lấy điểm D trên cạnh AB, đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔACD có 

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Xét ΔKBD và ΔKCE có 

\(\widehat{KBD}=\widehat{KCE}\)

BD=CE

\(\widehat{KDB}=\widehat{KEC}\)

Do đó:ΔKBD=ΔKCE

4 tháng 11 2016

 

a/ Xét tam giác BCD và tam giác BCE có

-góc B = góc C

-BD = EC

-BC: cạnh chung

=> tam giác BCD = tam giác BCE (cạnh góc cạnh)

=> BE=CD (2 cạnh tương ứng)

b/ Xét tam giác KBD và tam giác KCE có

-Góc BKD = góc CKE (đối đỉnh)

-BD=CE

-KB=KC

=> tam giác KBD = tam giác KCE

5 tháng 11 2016

ở câu a tại sao góc b= góc c vậy bn

2 tháng 2 2019

tự vẽ hình

a) Xét tam giác ABE và tam giác ACD, ta có:

Góc BAE= góc DAC(hay góc A là góc chung)

AD=AC(gt)

AD=AE(gt)

Vậy tam giác ABE = tam giác ACD (c-g-c)

=> BE=CD ( cặp cạnh t/ứng)

=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK

 b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)

tam giác DBK có: góc D+góc B+góc K=180 độ

tam giác KCE có: góc K+góc C+góc E=180 độ

mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")

=> góc D=góc E

Xét tam giác BKD và tam giác KCE, ta có:

Góc BDK=góc KEC(cmt)

Góc DBK=góc ECK(cmt)

DB=CE(cmt)

Vậy tam giác BKD = tam giác KCE(g-c-g)

=> DK=EK(cặp cạnh tướng ứng)

c) Xét tam giác ADK và tam giác AEK, ta có:

AD=AE(gt)

DK=KE(cmt)

AK là cạnh chung

Vậy tam giác ADK= tam giác AEK(c-c-c)

=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK

=> AK là p/g của góc BAC

d) Góc BAK=góc CAK hay góc BAI=góc CAI

Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(gt)

AI là cạnh chung

Góc BAI=góc CAI (cmt)

Vậy tam giác BAI = tam giác CAI(c-g-c)

=>Góc AIB=góc AIC(cặp góc t/ứng)

mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ

=> AI vuông góc với BC

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

26 tháng 2 2018

a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB

mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)

b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)

xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)

xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg

a: Xét ΔMAB và ΔMEC có 

\(\widehat{MBA}=\widehat{MCE}\)

MB=MC

\(\widehat{AMB}=\widehat{EMC}\)

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

nên MA=ME

hay M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

DO đó: ABEC là hình bình hành

SUy ra: AC//BE

c: Sửa đề: BH\(\perp\)AC

Xét ΔAHB vuông tại H và ΔEKC vuông tại K có

AB=EC

\(\widehat{HAB}=\widehat{KEC}\)

Do đó:ΔAHB=ΔEKC

Suy ra: BH=CK

Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

mà \(\widehat{BHC}=90^0\)

nên BHCK là hình chữ nhật

Suy ra: KH=BC

a) ta có tam giác abc là tam giác cân

=> AD=AC

MÀ  BD=CE  (1)

=>AD=AE(2)

Từ 1 và 2 suy ra DE là đường TB 

=> DE=1/2BC

=> DE//BC (đccm)

sửa lại 

=>AB=AC

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

9 tháng 12 2018

câu b là \(\Delta\)MBD = \(\Delta\)MBA nha  Viết lộn =.=

9 tháng 12 2018

Sai cả đề ròi k cần làm nữa đâu sr :((

18 tháng 2 2017

A B C H O F E 1 1 1 1 1 2

Giải:

a) Xét \(\Delta BEC,\Delta CFB\) có:

\(\widehat{E_1}=\widehat{F_1}=90^o\)

BC: cạnh chung

\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )

b) Vì \(\Delta BEC=\Delta CFB\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )

\(\Rightarrow\Delta BOC\) cân tại O

\(\Rightarrow OB=OC\)

Xét \(\Delta ABO,\Delta ACO\) có:

AB = AC ( t/g ABC cân tại A )

AO: cạnh chung

OB = OC ( cmt )

\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )

\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:

\(BC^2=BE^2+CE^2\)

\(\Rightarrow13^2=BE^2+5^2\)

\(\Rightarrow BE^2=144\)

\(\Rightarrow BE=12\)

d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\) ( theo b )

AH: cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )

\(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow AH\perp BC\)

hay \(AO\perp BC\) tại H ( đpcm )

Vậy...

18 tháng 2 2017

I don't Knowbucminh