K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

9 tháng 1 2022

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến

nên AM là tia phân giác của góc BAC

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có:\(\Delta AMB = \Delta AMC\)nên AB = AC, MB = MC nên M là trung điểm của đoạn thẳng BC.

b) Ta có:\(\Delta AMB = \Delta AMC\)nên \(\widehat {AMB} = \widehat {AMC},\widehat {MAB} = \widehat {MAC},\widehat {MBA} = \widehat {MCA}\).

Vậy tia AM là tia phân giác của góc BAC vì \(\widehat {MAB} = \widehat {MAC}\).

Ta thấy:\(\widehat {AMB} = \widehat {AMC}\)mà ba điểm B, M, C thẳng hàng nên \(\widehat {BMC} = 180^\circ \).

\(\Rightarrow \widehat {AMB} = \widehat {AMC} = \dfrac{1}{2}.\widehat {BMC} = \dfrac{1}{2}.180^\circ  = 90^\circ \). Vậy \(AM \bot BC\).

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

18 tháng 9 2023

Xét 2 tam giác AMB và AMC có:

AM chung

AB=AC (do tam giác ABC cân tại A)

MB=MC (gt)

\(\Rightarrow\) \(\Delta AMB=\Delta AMC\) (c.c.c)

\(\Rightarrow\) \(\widehat {BAM} = \widehat {CAM}\)(2 góc tương ứng).

Mà tia AM nằm trong góc BAC

\(\Rightarrow\) AM là phân giác của góc BAC

Mặt khác: Do \(\Delta AMB=\Delta AMC\) nên \(\widehat {AMB} = \widehat {AMC}\)(2 góc tương ứng) mà \(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)

Nên: \(\widehat {AMB} = \widehat {AMC} = {90^o}\).

Vậy AM vuông góc với BC.

19 tháng 9 2019

a) Chứng minh được ∆ A M B   =   ∆ A M C  (c.c.c).

Từ đó suy ra AM là tia phân giác của góc BAC.

b) Xét tam giác ABC có AM, BD,CE là các tia phân giác. Từ tính chất ba đường phân giác trong tam giác, suy ra ba đường thẳng AM,BD,CE đồng quy.

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

18 tháng 1 2022

Tham khảo:

Xét tam giác `ABM` và tam giác `AMC`, ta có :

AM cạnh huyền chung

\(\widehat{AMB}=\widehat{AMC}=90^o\)(góc vuông )

\(\widehat{BAM}=\widehat{MAC}\)(giả thiết)

Do đó tam giác `ABM`=tam giác `AMC`(cạnh huyền-cạnh góc vuông)

\(=>AB=AC\)(hai cạnh tương ứng)

=>tam giác `ABC` cân tại `A.` 

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj

27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined

18 tháng 9 2023

a)

Xét 2 tam giác vuông AMC và AMB có:

AM chung

BM=CM (gt)

=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)

=> AC=AB (2 cạnh tương ứng)

=> Tam giác ABC cân tại A

b)

Kẻ MH vuông góc với AB (H thuộc AB)

     MG vuông góc với AC (G thuộc AC)

Xét 2 tam giác vuông AHM và AGM có:

AM chung

\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)

=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)

=> HM=GM (2 cạnh tương ứng)

Xét 2 tam giác vuông BHM và CGM có:

BM=CM (giả thiết)

MH=MG(chứng minh trên)

=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)

=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)

=>Tam giác ABC cân tại A.

18 tháng 9 2023

Bạn ơi copy ghi tham khảo