\(\Delta\)ABC cân tại A. Gọi M, D, E lần lượt là trung điểm của BC, AB, AC.

a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2020

Chương II : Tam giác

a, Xét \(\Delta ABM\)\(\Delta ACM\) có:

\(BM=CM\left(M-là-tr.điểm-BC\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)

\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)

b, Xét \(\Delta ABC\) có:

\(D-là-tr.điểm-của-AB\)

\(E-là-tr.điểm-của-AC\)

\(\Rightarrow DE//BC\)

Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)

\(\Rightarrow AM\perp BC\)

Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

29 tháng 1 2017

A B C D I K M 1 2

a)

Xét tam giác AMB và tam giác DMC có:

AM = DM (gt)

AMB = DMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác DMC (c.g.c)

b)

=> ABM = DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // DC

c)

Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:

IMA = KMD (2 góc đối đỉnh)

MA = MD (gt)

=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)

=> IM = KM (2 cạnh tương ứng)

30 tháng 1 2017

Đỗ Nguyễn Như Bình hăm có gì :D

11 tháng 12 2019

a) Vì D là điểm đối xứng với A qua \(M\left(gt\right)\)

=> M là trung điểm của \(AD.\)

=> \(AM=DM.\)

Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(cmt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

c) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(AB=DC\) (2 cạnh tương ứng).

Lại có: \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)

=> \(\widehat{ABC}=\widehat{DCB}.\)

Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

\(AB=DC\left(cmt\right)\)

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\) (1).

=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

Từ (1) => \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng).

\(\widehat{BAC}=90^0\left(gt\right)\)

=> \(\widehat{CDB}=90^0.\)

=> \(CD\perp BD.\)

\(AC\) // \(BD\left(cmt\right)\)

=> \(AC\perp CD.\)

d) Có 2 cách:

Cách 1:

Ta có: \(AC\perp CD\left(cmt\right)\)

=> \(\widehat{DCA}=90^0.\)

\(\widehat{BAC}=90^0\left(gt\right).\)

=> \(\widehat{BAC}=\widehat{DCA}=90^0.\)

Xét 2 \(\Delta\) vuông \(ABC\)\(CDA\) có:

\(\widehat{BAC}=\widehat{DCA}=90^0\)

\(AB=CD\left(cmt\right)\)

Cạnh AC chung

=> \(\Delta ABC=\Delta CDA\) (cạnh huyền - cạnh góc vuông).

Cách 2:

\(AB\) // \(CD\left(cmt\right)\)

=> \(\widehat{ABC}=\widehat{CDA}\) (vì 2 góc so le trong).

Xét 2 \(\Delta\) \(ABC\)\(CDA\) có:

\(AB=CD\left(cmt\right)\)

\(\widehat{ABC}=\widehat{CDA}\left(cmt\right)\)

Cạnh AC chung

=> \(\Delta ABC=\Delta CDA\left(c-g-c\right).\)

e) Theo câu d) ta có \(\Delta ABC=\Delta CDA.\)

=> \(BC=AD\) (2 cạnh tương ứng).

Ta có: M là trung điểm của \(AD\left(cmt\right)\)

=> \(AM=\frac{1}{2}AD\) (tính chất trung điểm).

\(AD=BC\left(cmt\right)\)

=> \(AM=\frac{1}{2}BC\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

21 tháng 11 2017

A B C E M

a, xét tam giác AMB và tam giác EMC có :

      AM = ME (gt)

      góc AMB = góc EMC (hai góc đối đỉnh)

      BM = MC (gt)

  \(\Rightarrow\)\(\Delta AMB=\Delta EMC\)(c-g-c)

b,xét tam giác BME và  tam giác CMA có :

           BM = MC (gt)

           AM = ME (gt)

           góc AMB = góc CME (hai góc đối đỉnh )

\(\Rightarrow\Delta BME=\Delta CMA\)(c-g-c)

\(\Rightarrow\widehat{ACM}=\widehat{BME}\)(hai góc tương ứng)

\(\Rightarrow AC\)// BE(đpcm)

c,xét tam giác ABC và tam giác ECB có :

          AM = ME (gt)

          BC là cạnh chung

          góc ACB = góc CBE (cmt) 

\(\Rightarrow\Delta ABC=\Delta ECB\)(c-g-c)

\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^0\) (hai góc tương ứng)

\(\Rightarrow\Delta BEC\)vuông tại E

7 tháng 1 2019

a)  Xét tgiac ABM và tgiac ACM có:

AB = AC (gt)

góc ABM = góc ACM (gt)

MB = MC (gt)

suy ra:  tgiac ABM = tgiac ACM   (c.g.c)

b) tgiac ABM = tgiac ACM 

=>  góc AMB = góc AMC

mà góc AMB + góc AMC = 1800

=>  góc AMB = góc AMC = 900

hay AM vuông góc với BC

c)  Xét tgiac MBK và tgiac MCA có

MB = MC (gt)

góc BMK = góc CMA (dd)

MK = MA (gt)

suy ra: tgiac MBK = tgiac MCA   (c.g.c)

=>  góc MBK = góc MCA 

mà 2 góc này so le trong

=>   BK // MC

7 tháng 1 2019

A B C M K

CM : Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

  BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

b) Ta có : Tam giác ABM = tam giác ACM (cmt)

=> góc BMA = góc AMC (hai góc tương ứng)

Mà góc BMA + góc AMC = 1800 ( kề bù )

 hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

c) Xét tam giác AMK và tam giác CMA

có MK = MA (gt)

  góc BMK = góc AMC ( đối đỉnh)

  BM = CM (gt)

=> tam giác AMK = tam giác CMA (c.g.c)

=> góc KBM = góc MCA (hai góc tương ứng)

Mà góc KBM và góc MCA ở vị trí so le trong

=> Bk // AC

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)