Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C D I K M 1 2
a)
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
b)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
c)
Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:
IMA = KMD (2 góc đối đỉnh)
MA = MD (gt)
=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)
=> IM = KM (2 cạnh tương ứng)
a) Vì D là điểm đối xứng với A qua \(M\left(gt\right)\)
=> M là trung điểm của \(AD.\)
=> \(AM=DM.\)
Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(cmt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
c) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(AB=DC\) (2 cạnh tương ứng).
Lại có: \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{DCB}.\)
Xét 2 \(\Delta\) \(ABC\) và \(DCB\) có:
\(AB=DC\left(cmt\right)\)
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\) (1).
=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AC\) // \(BD.\)
Từ (1) => \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng).
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
=> \(\widehat{CDB}=90^0.\)
=> \(CD\perp BD.\)
Mà \(AC\) // \(BD\left(cmt\right)\)
=> \(AC\perp CD.\)
d) Có 2 cách:
Cách 1:
Ta có: \(AC\perp CD\left(cmt\right)\)
=> \(\widehat{DCA}=90^0.\)
Mà \(\widehat{BAC}=90^0\left(gt\right).\)
=> \(\widehat{BAC}=\widehat{DCA}=90^0.\)
Xét 2 \(\Delta\) vuông \(ABC\) và \(CDA\) có:
\(\widehat{BAC}=\widehat{DCA}=90^0\)
\(AB=CD\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\) (cạnh huyền - cạnh góc vuông).
Cách 2:
Vì \(AB\) // \(CD\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{CDA}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) \(ABC\) và \(CDA\) có:
\(AB=CD\left(cmt\right)\)
\(\widehat{ABC}=\widehat{CDA}\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\left(c-g-c\right).\)
e) Theo câu d) ta có \(\Delta ABC=\Delta CDA.\)
=> \(BC=AD\) (2 cạnh tương ứng).
Ta có: M là trung điểm của \(AD\left(cmt\right)\)
=> \(AM=\frac{1}{2}AD\) (tính chất trung điểm).
Mà \(AD=BC\left(cmt\right)\)
=> \(AM=\frac{1}{2}BC\left(đpcm\right).\)
Chúc bạn học tốt!
A B C M D E
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB = AC ( gt )
BM = CM ( M là trung điểm BC )
AM : Cạnh chung
=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )
b) Ta có : \(\Delta ABM\) = \(\Delta ACM\) ( cmt )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90
Hay AM \(\bot\) BC
Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
A B C E M
a, xét tam giác AMB và tam giác EMC có :
AM = ME (gt)
góc AMB = góc EMC (hai góc đối đỉnh)
BM = MC (gt)
\(\Rightarrow\)\(\Delta AMB=\Delta EMC\)(c-g-c)
b,xét tam giác BME và tam giác CMA có :
BM = MC (gt)
AM = ME (gt)
góc AMB = góc CME (hai góc đối đỉnh )
\(\Rightarrow\Delta BME=\Delta CMA\)(c-g-c)
\(\Rightarrow\widehat{ACM}=\widehat{BME}\)(hai góc tương ứng)
\(\Rightarrow AC\)// BE(đpcm)
c,xét tam giác ABC và tam giác ECB có :
AM = ME (gt)
BC là cạnh chung
góc ACB = góc CBE (cmt)
\(\Rightarrow\Delta ABC=\Delta ECB\)(c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^0\) (hai góc tương ứng)
\(\Rightarrow\Delta BEC\)vuông tại E
a) Xét tgiac ABM và tgiac ACM có:
AB = AC (gt)
góc ABM = góc ACM (gt)
MB = MC (gt)
suy ra: tgiac ABM = tgiac ACM (c.g.c)
b) tgiac ABM = tgiac ACM
=> góc AMB = góc AMC
mà góc AMB + góc AMC = 1800
=> góc AMB = góc AMC = 900
hay AM vuông góc với BC
c) Xét tgiac MBK và tgiac MCA có
MB = MC (gt)
góc BMK = góc CMA (dd)
MK = MA (gt)
suy ra: tgiac MBK = tgiac MCA (c.g.c)
=> góc MBK = góc MCA
mà 2 góc này so le trong
=> BK // MC
A B C M K
CM : Xét tam giác ABM và tam giác ACM
có AB = AC (gt)
BM = CM (gt)
AM : chung
=> tam giác ABM = tam giác ACM (c.c.c)
b) Ta có : Tam giác ABM = tam giác ACM (cmt)
=> góc BMA = góc AMC (hai góc tương ứng)
Mà góc BMA + góc AMC = 1800 ( kề bù )
hay 2\(\widehat{BMA}\)= 1800
=> góc BMA = 1800 : 2
=> góc BMA = 900
c) Xét tam giác AMK và tam giác CMA
có MK = MA (gt)
góc BMK = góc AMC ( đối đỉnh)
BM = CM (gt)
=> tam giác AMK = tam giác CMA (c.g.c)
=> góc KBM = góc MCA (hai góc tương ứng)
Mà góc KBM và góc MCA ở vị trí so le trong
=> Bk // AC
a/
Xét tg ABM và tg ACM có
MB=MC (đề bài)
AB=AC (Do tg ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)
=> tg ABM=tg ACM (c.g.c)
Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)
b/
Xét tg vuông BME và tg vuông CMF có
MB=MC
\(\widehat{ABC}=\widehat{ACB}\)
=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M
c/
Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)
\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )
=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\) (Trong tg can EMF đường phân giác đồng thời là đường cao)
Mà \(AM\perp BC\)
=> EF//BC (cùng vuông góc với AM)
a, Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(BM=CM\left(M-là-tr.điểm-BC\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)
b, Xét \(\Delta ABC\) có:
\(D-là-tr.điểm-của-AB\)
\(E-là-tr.điểm-của-AC\)
\(\Rightarrow DE//BC\)
Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AM\perp BC\)
Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)