Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a, Xét tam giác ABC, có:
M là trung điểm của AB
N là trung điểm của AC
=> MN là đtb của tam giác ABC
=> MN//BC
=> BMNC là hình thang (MN//BC)
Vì tam giác ABC cân tại A nên góc ABC = góc ACB
=> góc MBC = góc NCB.
Xét hình thang BMNC(MN//BC), có:
góc MBC = góc NCB
=> BMNC là hình thang cân.
b, Xét tam giác ABC, có:
N là trung điểm của AC
H là trung điểm của BC
=> NH là đtb của tam giác ABC
=> NH//AB và NH = 1/2 .AB
Vì M là trung điểm của AB nên AM = 1/2 . AB
Suy ra: AM = NH
Xét tứ giác AMHN, có:
AM = NH
NH//AM (NH//AB)
=> AMHN là hình bình hành (1)
Vì tam giác ABC cân tại A nên AB = AC
mà AM = 1/2 . AB ( M là tđ của AB )
AN = 1/2 . AC ( N là tđ của AC )
Suy ra: AM = AN (2)
Từ (1) và (2) ta suy ra: hình bình hành AMHN là hình thoi.
c,SABC = 1/2 . AH . BC = 1/2 . 4 . 6 = 12 (cm2)
Vì MN là đtb của tam giác ABC nên MN = 1/2 . BC
=> MN = 1/2 . 6 = 3 (cm)
Xét tam giác AHC có:
N là trung điểm của AC
ON // HC ( MN//BC)
=> O là trung điểm của AH
=> AO = 1/2 . AH = 1/2 . 4 = 2 (cm)
SAMN = 1/2 . AO . MN = 1/2 . 2 . 3 = 3 (cm2)
SBMNC = SABC - SAMN = 12 - 3 = 9 (cm2)
d,Vì K là điểm đối xứng của H qua N nên N là tđ của HK
=> HN = 1/2 . HK (3)
Vì AMHN là hình thoi nên HN = AM
mà AM = 1/2 . AB nên HN = 1/2 . AB (4)
Từ(3) và (4) ta suy ra:
HK = AB
Vì AM//NH nên AB//HK
mà HK = AB
nên AKHB là hình bình hành
=> hai đường chéo AH và BK cắt nhau tại tđ của mỗi đường
mà O là trung của AH
nên O là trung điểm của BK
=> BK đi qua O
=> B,O,K thẳng hàng.
a. M là trung điểm của DE, I là trung điểm của BE
=> MI là đường trung bình của tam giác EDB
=> MN = \(\frac{1}{2}\) DB (1)
CMTT ta có
MK = \(\frac{1}{2}\) EC (2)
KN = \(\frac{1}{2}\) BD (3)
IN = \(\frac{1}{2}\) EC (4)
lại có BD = CE (5)
từ 1 2 3 4 5 => MI = MK = KN = NI
=> MINK là hình thoi
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=BC/2
Xét tứ giác BDEC có
DE//BC
nên BDEC là hình thang
mà \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Xét tứ giác AMCK có
E là trung điểm của AC
E là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE