\(\\ \Delta\)ABC :AB=AC và hai đường trung tuyến BD và CE cắt nhau tại G(D
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:BE=AE=AB/2

CD=CA/2

mà AB=CA

nên BE=CD
Xét ΔBEC và ΔCDB có

BE=CD

góc EBC=góc DCB

BC chung

Do đó:ΔBEC=ΔCDB

b: Xét ΔBGC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a: Xét ΔBED và ΔBEC có 

BE chung

\(\widehat{DBE}=\widehat{CBE}\)

BD=BC

Do đó: ΔBED=ΔBEC

b:Xét ΔCDK có

KE là đường cao

KE là đường trung tuyến

Do đó: ΔCDK cân tại K

11 tháng 2 2019

A B C D E 1 2

vì AC>AB mà AB=AD nên AD<AC mặt khác D thuộc AC nên D nằm giữa A và C

TA có: E thuộc đường trung trực của DB nên E cách đều D và B suy ra DE=DB

E thuộc đường trung trực của AC nên E cách đều A và C suy ra EA=EC

Xét \(\Delta AEB\)và \(\Delta CED\)

\(\hept{\begin{cases}AB=DC\left(gt\right)\\BE=ED\left(cmt\right)\\AE=EC\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta AEB=\Delta CED\left(c.c.c\right)\)

b, Do \(\Delta AEB=\Delta CED\left(c.c.c\right)\left(cmt\right)\)

Nên \(\Rightarrow\widehat{A_1}=\widehat{DCE}\)(2 góc tương ứng bằng nhau) (1)

Mà AE=EC suy ra tam giác AEC cân tại E

\(\Rightarrow\widehat{A_2}=\widehat{DCE}\)(2)

Từ 1 và 2 suy ra \(\widehat{A_1}=\widehat{A_2}\left(=\widehat{DCE}\right)\)

suy ra AE là phân giác của góc trong tại đỉnh A của tam giác ABC

11 tháng 2 2019

2 đường kẻ hồng hồng là đường ttrung trực nha!

còn màu xanh lam là mk nối thêm cho ra tam giác 

26 tháng 4 2017

B A C D E F

a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:

\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung

\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)

b) Từ câu a  => AD = EB(2 cạnh tương ứng)

\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)

=> DF = DC (2 cạnh tương ứng)

=> \(\Delta FDC\)cân tại D

26 tháng 4 2017

Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi

Cách mình chứng minh góc DFC = góc FCD

Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D

=> D là trực tâm tam giác ABC

=> BD là đường cao thứ 3

=> BD vuông góc FC tại D

Xét tam giác BFC có BD vừa là phân giác vừa là đường cao

=> tam giác BFC cân tại B

=> góc BFC = góc BCF

Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)

Xét tam giác ADF và tam giác DEC có:

  góc ADF = góc EDC (đối đỉnh)

  góc DAF = góc DEC = 90 độ (gt)

  AD = DE (cmt)

=> tam giác ADF = tam giác EDC (g.c.g)

=> góc AFD = góc DCE (hai góc t.ứng)

Mà: góc BFC = góc BCF

=> góc DFC = góc DCF 

=> tam giác FDC cân tại F

Xong!! =)))

11 tháng 3 2019

(bn tu ve hinh nha )

a,Xet tam giac AEC va tam giac ABD, ta co:

                goc a chung 

                  AB=AC (gt)

                     goc ABD=goc ACE (=900)

           =>tam giac AEC=ABD(g.c.g)

           =>AD=AE va BD=CE (tg ung)

b,Theo cau a , ta co ;AD=AE ;AB=AC(cmt)

   Ma AB+BE=AE

         AC+CD=AD

   =>AE-AB=AD-AC

   =>BE=CD 

      Xet tam giac BEC va tam giac CDB , ta co : 

                  BE=CD (cmt0

                    CB chung

                     CE=BD(cm cau b ) 

          => tam giac BEC=tam giac CDB(C.C.C)

c,Goi M  la giao diem cua AM vs ED (M thuoc ED)

         Theo cau a , AE=AD

      Xet tam giac ABI  va tam giac ACI , ta co:

             goc ABI =goc ACI =900 (gt)

              AB=AC(GT)

                AI chung

=>  tam giac ABI =tam giac ACI(ch-cgv)

 =>goc BAI=goc CAI (tg ung)

         Xet tam giac AEM va tam giac ADM , ta co

                     AE=AD (cm cau a)

                     goc BAI =goc CAI (cmt)

                      AM chung 

 =>tam giac AEM =tam giac ADM ( c.g.c) 

=>goc AME = goc AMD (tg ung)

ma goc AME+goc AMD =1800(KB)

=>goc AME=goc AMD=1/2*1800=900=>AM vuong goc vs ED

ma I thuoc AM 

=>AI vuong goc vs ED

                    

11 tháng 3 2019

thank you !

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

17 tháng 3 2019

A B C E D O

a.Xét\(\Delta ADB\)\(\Delta AEC\)có:

\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)

\(\widehat{A}\)chung

AB=AC(gt)

=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)

b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)

Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)

=> \(\widehat{OBC}=\widehat{OCB}\)

=> Tam giác BOC cân tại O

câu b sai đề thì phải bạn ạ

còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được

17 tháng 3 2019

M là trung điểm BC bn ạ

9 tháng 6 2020

a. Tam giác ABC cân tại A suy ra AH là đường cao cũng là đường phân giác góc A

\(\Rightarrow\widehat{HAP}=\widehat{HAQ}\)

xét 2 tam giác vuông AHP và AHQ có:

AH chung

góc HAP= góc HAQ ( cm trên)

suy ra 2 tam giác bằng nhau theo TH cạnh huyền- góc nhọn

suy ra AP=AQ nên tam giác APQ cân tại A.

b. Do 2 tam giác APQ và ABC cùng cân tại A nên: \(\widehat{APQ}=\widehat{ABC}\left(=\frac{180^o-A}{2}\right)\)

mà 2 góc này ở vị trí đông vị nên PQ//BC.

c. gọi F là điểm đối xứng của E qua H. => HE=HF

suy ra 2 tam giác BEH và CFH bằng nhau (c.g.c) => BE=CF.

Từ a => HP=HQ

suy ra 2 tam giác HBP và HCQ bằng nhau theo TH (cạnh huyền- cạnh góc vuông).

=> BP=CQ.

xét tam giác CFQ có CF là cạnh huyền nên CF>CQ => BE> BP => đccm