\(\Delta\)ABC ( A^ = 90*),vẽ (0) đường kính AB cắt CB ở E, từ C vẽ tiếp tuyến CD tới...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

a, Ta có: AEB = 90 (góc nội tiếp chắn nửa đường tròn) => AE   CB 

Xét tam giác vuông CAB, ta có: CA2 = CE.CB (Hệ thức lượng)

b,  Xét tứ giác CDOA , ta có: 

CAO =90 (gt)

CDO =90 ( CD là tiếp tuyến và D là tiếp điểm)

=> CDO + CAO =180

=> ĐOCM

C, Ta có: CA=CD (t/ch tiếp tuyến) và CK là tia f/g (t/ch típ tuyến)

=> Tam giác CAD cân có CK là f/g => CK là đường cao => CKA=90

Xét tứ giác CEKA , ta có: 

góc AEB = 90 (góc nội tiếp chắn nửa đường tròn) => CEA =90

CKA=90 (cmt)

=> CEA=CKA=90

Mà điểm E và K cùng nhìn đoạn CA

Tứ giác CEKA nội tiếp => góc CAK= góc KEI (1)

Mà: DH // CA (cùng vuông góc AB)

=> góc KAC = góc KDI (2) 

Từ (1)(2) => góc KEI =góc KDI 

Xét tứ giác KEID, ta có:

góc KEI = góc KDI 

Mà điểm D và E cùng nhìn cạnh KI 

=> đpcm

d, Vì KEID nội tiếp => EDK=EIK

Mà góc EDK = góc EBA (cùng chắn cung AE)

=> góc EIK =EBA. Mà 2 góc này ở vị trí đồng vị

=> KI //AB

Mà: AB   DH => KI  |  DH

Lại có: HD //CA (cùng vuông góc AB)

=> KI   CA (đpcm) 

7 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l

a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)

Vậy tam giác ABC là tam giác vuông tại C.

b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\) 

Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.

Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.

c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:

\(EC.EA=BE^2\)

Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:

\(BE^2=OE^2-OB^2=OE^2-R^2\)

Vậy ta có ngay \(EC.EA=OE^2-R^2\)

d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:

\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)

Lại có NH = HC nên BF = FE

Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.

Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)

hay CF là tiếp tuyến của đường tròn (I)

7 tháng 2 2020

Câu a, Tứ giác AECD có : CEA^=90* ; CDA^=90*

=>CEA^+CDA^=180*

=>AECD nội tiếp

Câu b, Xét tam giác BCD và tam giác ACE , có :

BDC^=CEA^=90*

CBA^=CAE^ ( góc nội tiếp ; góc ở tâm cùng chắn một cung )

=>Tam giác BCD ~ Tam giác ACE

=> BC/AC=CD/CE=BD/AE (1)

Xét tam giác CFB và tam giác CDA , có :

CFB^=CDA^=90*

CBF^=CAD^ (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )

=>Tam giác CFB ~ tam giác CDA ( g - g )

=>CF/CD=CB/CA=BF/AD (2)

Từ (1) và (2) 

=>CD/CE=CF/CD

=>CD^2=CE.CF

Chúc bạn học tốt !

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
28 tháng 3 2017

Máy mình vẽ hình không được bạn vẽ giúp mình nha

a/Tứ giác ABOC CÓ

ABO=ACO=90 độ

=>ABO+ACO=180 Độ

=>ABOC là tứ giác nội tiếp

tứ giác ABOH có

AHO=ABO=90 độ (cùng nhìn AO)

=>AHO+ABO=180 độ

=>ABOH là tứ giác nội tiếp

b/Xét ADB và ABE

A là góc chung

ABD=AEB(cùng chắn BD)

=>ADB~ABE(góc.góc)

AB/AD=AE/AB

=>AB^2=AD*AE

Hiện tại mình chỉ có thể làm đến đấy câu c và câu d mình không biết làm

28 tháng 3 2017

uk mk cũng chưa nghĩ đc câu c , d