\(\Delta MNP\)vuông tại M, đường cao MK. Trên tia đối tia NP lấy A sao cho 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

a) Xét ΔEAM và ΔNAD có 

AE=AN(gt)

ˆEAM=ˆNADEAM^=NAD^(hai góc đối đỉnh)

AM=AD(A là trung điểm của MD)

Do đó: ΔEAM=ΔNAD(c-g-c)

Suy ra: ME=ND(Hai cạnh tương ứng)

12 tháng 12 2021

ứdfrthyjuiopoikujyhgtf

27 tháng 11 2021

a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB

27 tháng 11 2021

TL :

Đây nhé

Xin lỗi phải chờ lâu

#####

Uchi ha

sáuke

nighy

undefined

undefined

28 tháng 7 2019

A B M C O O 1 2 O I E D N

a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1= ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB

Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).

b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI

Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB 

=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).

c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)

=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC

Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)

Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)

Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).

24 tháng 11 2017

O B A M N C E F

a) Do C là giao điểm của BN với đường tròn nên C thuộc đường tròn.

Lại có AB là đường kính nên \(\widehat{ACB}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

Vậy nên tam giác ABC vuông tại C.

b) Do M thuộc đường tròn nên \(\widehat{AMB}=90^o\Rightarrow EM\perp AN\)

Ta cũng có \(NC\perp AE\)

Xét tam giác ANE có EM, NC là các đường cao nên B là trực tâm.

Vậy thì \(AB\perp NE\)

c) Xét tứ giác AFNE có : MA = MN; MF = ME nên AFNE là hình bình hành (Dấu hiệu nhận biết)

\(\Rightarrow\) FN // AE

Ta chứng minh BA = BN và \(BN\perp FN\)

Thật vậy, xét tam giác ABN có MA = MN, \(BM\perp AN\) nên ABN là tam giác cân.

Vậy BA = BN

Ta có \(NC\perp AE\Rightarrow NC\perp FN\)

Suy ra NF là tiếp tuyến của đường tròn (B; BA).

24 tháng 11 2017

Em chưa học tới góc nội tiếp chắn nửa đường tròn

20 tháng 7 2017

1. M N P K H

Kẻ \(MH\perp NP\) tại H

Ta có: \(S_{MNP}=\dfrac{1}{2}MH.NP\) (1)

\(S_{MNK}=\dfrac{1}{2}MH.KN\) (2)

Ta lại có: KN=MN mà NM<NP

\(\Rightarrow KN< NP\) (3)

Từ (1),(2) và (3) suy ra: \(S_{MNP}>S_{MNK}\)

2.

\(Sin^21^o+Sin^22^o+Sin^23^o+...+Sin^287^o+Sin^288^o+Sin^298^o\)

\(=\left(Sin^21^o+Sin^289^o\right)\left(Sin^22^o+Sin^288^o\right)+...+Sin^245^o\\ =\left(Sin^21^o+Cos^21^o\right)\left(Sin^22^o+Cos^22^o\right)+....+Sin^245^o\\ =44+Sin^245^o\\ =44+\dfrac{1}{2}=44,5\)