\(\Delta MNP\)có \(\widebat{A}\) =\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Sai đề rùi bạn ui :v

Câu b tại s MN // NP à ? ( đề đúng cs pk là MN // PH ?)

Câu c Tại s K ; P ; M thẳng hàng ak ? Mong bạn xemm lại đề hộ mình :D

21 tháng 1 2020

a) Có △MNP cân tại M

\(\Rightarrow\left\{{}\begin{matrix}MN=MP\\\widehat{MNP}=\widehat{MPN}\end{matrix}\right.\)

\(MH\perp NP\Rightarrow\widehat{MHN}=\widehat{MHP}=90^o\)

Xét △MHN và △MHP có:

\(\widehat{MHN}=\widehat{MHP}=90^o\\ MN=MP\\ \widehat{MNH}=\widehat{MPH}\)

\(\Rightarrow\text{△MHN = △MHP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HN=HP\) (2 cạnh tương ứng)

Mà H ∈ NP

\(\Rightarrow\) H là trung điểm của NP

b) \(HD\perp MN\Rightarrow\widehat{HDM}=\widehat{HDN}=90^o\\ HE\perp MP\Rightarrow\widehat{HEM}=\widehat{HEP}=90^o \)

Xét △HDN và △HEP có:

\(\widehat{HDN}=\widehat{HEP}=90^o\\ HN=HP\\ \widehat{DNH}=\widehat{EPH}\)

\(\Rightarrow\text{△HDN = △HEP}\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow HD=HE\) (2 cạnh tương ứng)

Xét △HDE có HD = HE

\(\Rightarrow\) △HDE cân tại H

c) Có △HDN = △HEP

\(\Rightarrow DN=EP\) (2 cạnh tương ứng)

Mà MN = MP

\(\Rightarrow MD=ME\)

Xét △MDE có MD = ME

\(\Rightarrow\) △MDE cân tại M

\(\Rightarrow\widehat{MDE}=\frac{180^o-\widehat{NMP}}{2}\left(1\right)\)

Lại có: △MNP cân tại M

\(\Rightarrow\widehat{MNP}=\frac{180^o-\widehat{NMP}}{2}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{MDE}=\widehat{MNP}\)

Mà 2 góc ở vị trí đồng vị

\(\Rightarrow\) DE // NP (dấu hiệu nhận biết)

\(MH\perp NP\)

\(\Rightarrow DE\perp MH\) (quan hệ từ vuông góc đến song song)

a) Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP(do ΔMNP cân tại M)

MH là cạnh chung

Do đó: ΔMHN=ΔMHP(cạnh huyền-cạnh góc vuông)

⇒NH=HP(hai cạnh tương ứng)

mà H∈NP(gt)

nên H là trung điểm của NP(đpcm)

b)Xét ΔDHN vuông tại D và ΔEHP vuông tại E có

NH=HP(cmt)

\(\widehat{DNH}=\widehat{EPH}\)(hai góc ở đáy của ΔMNP cân tại M)

Do đó: ΔDNH=ΔEPH(cạnh huyền-góc nhọn)

⇒DH=EH(hai cạnh tương ứng)

Xét ΔHDE có DH=EH(cmt)

nên ΔHDE cân tại H(đpcm)

c)Gọi O là giao điểm của DE và MH

Ta có: \(\widehat{NDH}+\widehat{HDO}+\widehat{MDO}=180độ\)

\(\widehat{PEH}+\widehat{OEH}+\widehat{MEO}=180độ\)

\(\widehat{NDH}=\widehat{HEP}\)(=90 độ)

\(\widehat{HDO}=\widehat{OEH}\)(ΔHDE cân tại H)

nên \(\widehat{MDO}=\widehat{MEO}\)

hay \(\widehat{MDE}=\widehat{MED}\)(vì O∈ED)

Xét ΔMDE có \(\widehat{MDE}=\widehat{MED}\)(cmt)

nên ΔMDE cân tại M(định lí đảo của tam giác cân)

Ta có: ΔMHN=ΔMHP(cmt)

\(\Rightarrow\widehat{NMH}=\widehat{PMH}\)(hai góc tương ứng)

mà D∈MN(gt)

và E∈MP(gt) và O∈MH(theo cách gọi)

nên \(\widehat{DMO}=\widehat{EMO}\)

Xét ΔMDO và ΔMEO có

MD=ME(ΔMDE cân tại M)

\(\widehat{DMO}=\widehat{EMO}\)(cmt)

MO là cạnh chung

Do đó: ΔMDO=ΔMEO(c-g-c)

\(\widehat{MOD}=\widehat{MOE}\)(hai góc tương ứng)

\(\widehat{MOD}+\widehat{MOE}=180độ\)(do D,O,E thẳng hàng)

nên \(\widehat{MOD}=\widehat{MOE}=\frac{180độ}{2}=90độ\)

⇒MO⊥DE

hay MH⊥DE(đpcm)

26 tháng 4 2020

Violympic toán 7

a) Xét △MNP có:

MN = MP

⇒ △MNP cân tại M

\(\widehat{MNP}=\widehat{MPN}\)

Xét △MNI và △MPI có:

MN = MP (g.t)

\(\widehat{MNP}=\widehat{MPN}\) (c.m trên)

NI = PI (g.t)

⇒ △MNI = △MPI (đpcm)

b) Xét △MNI và △HPI có:

NI = PI (g.t)

\(\widehat{MIN}=\widehat{HIP}\) (đối đỉnh)

IM = IH (g.t)

⇒ △MNI = △HPI (c.g.c)

\(\widehat{MNI}=\widehat{HPI}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // HP (đpcm)

c) Xét △MNP và △PKM có:

MP : cạnh chung

\(\widehat{MPN}=\widehat{PMK}\) (Mx // NP)

MK = NP (g.t)

⇒ △MNP = △PKM (c.g.c)

\(\widehat{NMP}=\widehat{KPM}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // PK

Mà MN // HP (c.m b)

⇒ Ba điểm K, P, H thẳng hàng (đpcm)

a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:

       HP = HN (H là trung điểm của NP)

       \(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)

        MH = HE (gt)

\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)

\(\Rightarrow MP=NE\)(2 cạnh tương ứng)

      \(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)

Mà 2 góc này ở vị trí so le trong

=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:

    MH = HE (gt)

    \(\widehat{AMH}=\widehat{BEH}\)(cm a)

    MA = BE (gt)

\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)

Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)

\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)

=> 3 điểm A,H,B thẳng hàng

c) Xét \(\Delta NEH\)có:

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)

\(\Rightarrow\widehat{NHE}+75^o=180^o\)

\(\Rightarrow\widehat{NHE}=105^o\)

Vì góc NHE là góc ngoài của tam giác EKH

=> góc NHE = góc KEH + góc EKH

=> 105o = góc KEH + 90o

=> góc KEH = 15o

\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)