Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rùi bạn ui :v
Câu b tại s MN // NP à ? ( đề đúng cs pk là MN // PH ?)
Câu c Tại s K ; P ; M thẳng hàng ak ? Mong bạn xemm lại đề hộ mình :D
a) Có △MNP cân tại M
\(\Rightarrow\left\{{}\begin{matrix}MN=MP\\\widehat{MNP}=\widehat{MPN}\end{matrix}\right.\)
\(MH\perp NP\Rightarrow\widehat{MHN}=\widehat{MHP}=90^o\)
Xét △MHN và △MHP có:
\(\widehat{MHN}=\widehat{MHP}=90^o\\ MN=MP\\ \widehat{MNH}=\widehat{MPH}\)
\(\Rightarrow\text{△MHN = △MHP}\left(\text{cạnh huyền - góc nhọn}\right)\)
\(\Rightarrow HN=HP\) (2 cạnh tương ứng)
Mà H ∈ NP
\(\Rightarrow\) H là trung điểm của NP
b) \(HD\perp MN\Rightarrow\widehat{HDM}=\widehat{HDN}=90^o\\ HE\perp MP\Rightarrow\widehat{HEM}=\widehat{HEP}=90^o \)
Xét △HDN và △HEP có:
\(\widehat{HDN}=\widehat{HEP}=90^o\\ HN=HP\\ \widehat{DNH}=\widehat{EPH}\)
\(\Rightarrow\text{△HDN = △HEP}\left(\text{cạnh huyền - góc nhọn}\right)\)
\(\Rightarrow HD=HE\) (2 cạnh tương ứng)
Xét △HDE có HD = HE
\(\Rightarrow\) △HDE cân tại H
c) Có △HDN = △HEP
\(\Rightarrow DN=EP\) (2 cạnh tương ứng)
Mà MN = MP
\(\Rightarrow MD=ME\)
Xét △MDE có MD = ME
\(\Rightarrow\) △MDE cân tại M
\(\Rightarrow\widehat{MDE}=\frac{180^o-\widehat{NMP}}{2}\left(1\right)\)
Lại có: △MNP cân tại M
\(\Rightarrow\widehat{MNP}=\frac{180^o-\widehat{NMP}}{2}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{MDE}=\widehat{MNP}\)
Mà 2 góc ở vị trí đồng vị
\(\Rightarrow\) DE // NP (dấu hiệu nhận biết)
Mà \(MH\perp NP\)
\(\Rightarrow DE\perp MH\) (quan hệ từ vuông góc đến song song)
a) Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP(do ΔMNP cân tại M)
MH là cạnh chung
Do đó: ΔMHN=ΔMHP(cạnh huyền-cạnh góc vuông)
⇒NH=HP(hai cạnh tương ứng)
mà H∈NP(gt)
nên H là trung điểm của NP(đpcm)
b)Xét ΔDHN vuông tại D và ΔEHP vuông tại E có
NH=HP(cmt)
\(\widehat{DNH}=\widehat{EPH}\)(hai góc ở đáy của ΔMNP cân tại M)
Do đó: ΔDNH=ΔEPH(cạnh huyền-góc nhọn)
⇒DH=EH(hai cạnh tương ứng)
Xét ΔHDE có DH=EH(cmt)
nên ΔHDE cân tại H(đpcm)
c)Gọi O là giao điểm của DE và MH
Ta có: \(\widehat{NDH}+\widehat{HDO}+\widehat{MDO}=180độ\)
\(\widehat{PEH}+\widehat{OEH}+\widehat{MEO}=180độ\)
mà \(\widehat{NDH}=\widehat{HEP}\)(=90 độ)
và \(\widehat{HDO}=\widehat{OEH}\)(ΔHDE cân tại H)
nên \(\widehat{MDO}=\widehat{MEO}\)
hay \(\widehat{MDE}=\widehat{MED}\)(vì O∈ED)
Xét ΔMDE có \(\widehat{MDE}=\widehat{MED}\)(cmt)
nên ΔMDE cân tại M(định lí đảo của tam giác cân)
Ta có: ΔMHN=ΔMHP(cmt)
\(\Rightarrow\widehat{NMH}=\widehat{PMH}\)(hai góc tương ứng)
mà D∈MN(gt)
và E∈MP(gt) và O∈MH(theo cách gọi)
nên \(\widehat{DMO}=\widehat{EMO}\)
Xét ΔMDO và ΔMEO có
MD=ME(ΔMDE cân tại M)
\(\widehat{DMO}=\widehat{EMO}\)(cmt)
MO là cạnh chung
Do đó: ΔMDO=ΔMEO(c-g-c)
⇒\(\widehat{MOD}=\widehat{MOE}\)(hai góc tương ứng)
mà \(\widehat{MOD}+\widehat{MOE}=180độ\)(do D,O,E thẳng hàng)
nên \(\widehat{MOD}=\widehat{MOE}=\frac{180độ}{2}=90độ\)
⇒MO⊥DE
hay MH⊥DE(đpcm)
a) Xét △MNP có:
MN = MP
⇒ △MNP cân tại M
⇒ \(\widehat{MNP}=\widehat{MPN}\)
Xét △MNI và △MPI có:
MN = MP (g.t)
\(\widehat{MNP}=\widehat{MPN}\) (c.m trên)
NI = PI (g.t)
⇒ △MNI = △MPI (đpcm)
b) Xét △MNI và △HPI có:
NI = PI (g.t)
\(\widehat{MIN}=\widehat{HIP}\) (đối đỉnh)
IM = IH (g.t)
⇒ △MNI = △HPI (c.g.c)
⇒ \(\widehat{MNI}=\widehat{HPI}\) (Hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong.
⇒ MN // HP (đpcm)
c) Xét △MNP và △PKM có:
MP : cạnh chung
\(\widehat{MPN}=\widehat{PMK}\) (Mx // NP)
MK = NP (g.t)
⇒ △MNP = △PKM (c.g.c)
⇒\(\widehat{NMP}=\widehat{KPM}\) (Hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong.
⇒ MN // PK
Mà MN // HP (c.m b)
⇒ Ba điểm K, P, H thẳng hàng (đpcm)
a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:
HP = HN (H là trung điểm của NP)
\(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)
MH = HE (gt)
\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)
\(\Rightarrow MP=NE\)(2 cạnh tương ứng)
\(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)
Mà 2 góc này ở vị trí so le trong
=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:
MH = HE (gt)
\(\widehat{AMH}=\widehat{BEH}\)(cm a)
MA = BE (gt)
\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)
Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)
\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)
=> 3 điểm A,H,B thẳng hàng
c) Xét \(\Delta NEH\)có:
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)
\(\Rightarrow\widehat{NHE}+75^o=180^o\)
\(\Rightarrow\widehat{NHE}=105^o\)
Vì góc NHE là góc ngoài của tam giác EKH
=> góc NHE = góc KEH + góc EKH
=> 105o = góc KEH + 90o
=> góc KEH = 15o
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
B A C D K H I
a ) Xét \(\Delta AHB\) vuông tại H ta có :
\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )
\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)
Vậy \(\widehat{HAB}=60^o\)
b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :
AH = AD (gt)
IH=ID (gt)
AI cạnh chung
\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)
Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )
Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )
\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)
Do đó \(AI\perp HD\left(đpcm\right)\)
c ) Vì \(\Delta AHI=ADI\) ( cm câu b )
\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )
Xét \(\Delta AHK\) và \(\Delta ADK\) có ;
AH = AD (gt)
\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)
AK cạn chung
\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )
\(\Rightarrow AD\perp AC\)
Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)
AD//AB ( đpcm)
k nha mấy bạn giải giùm mình đi