\(\Delta MNP\) có \(I\) là trung điểm của MP . Trên tia đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

M N P E F K I

Giải:
a) Xét \(\Delta IMN,\Delta IPK\) có:

\(IN=IK\left(gt\right)\)

\(\widehat{NIM}=\widehat{PIK}\) ( đối đỉnh )

\(IM=IP\left(=\frac{1}{2}MP\right)\)

\(\Rightarrow\Delta IMN=\Delta IPK\left(c-g-c\right)\)

\(\Rightarrowđpcm\)

b) Vì \(\Delta IMN=\Delta IPK\)

\(\Rightarrow MN=PK\) ( cạnh t/ứng )

\(\Rightarrowđpcm\)

c) Vì \(\Delta IMN=\Delta IPK\)

\(\Rightarrow\widehat{NMI}=\widehat{KPI}\)

hay \(\widehat{EMI}=\widehat{FPI}\)

Xét \(\Delta IEM,\Delta IFP\) có:
\(\widehat{EMI}=\widehat{FPI}\left(cmt\right)\)

\(IM=IP\left(=\frac{1}{2}MP\right)\)

\(\widehat{EIM}=\widehat{FIP}\) ( đối đỉnh )

\(\Rightarrow\Delta IEM=\Delta IFP\left(g-c-g\right)\)

\(\Rightarrow\widehat{MEI}=\widehat{PFI}\)

\(\Rightarrow\widehat{PFI}=90^o\)

\(\Rightarrow IF\perp KP\left(đpcm\right)\)

Vậy...

 

 

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

Xét \(\Delta MKP\) vuông tại M

\(KP^2=KM^2+PM^2=\left(\frac{5}{2}\right)^2+4^2=22.25\Rightarrow KP=\sqrt{\frac{69}{2}}cm\) (1 )

Xét \(\Delta MNP\) vuông tại M

\(NP^2=MN^2+MP^2=5^2+4^2=\sqrt{41}\) (2)

Từ (1) và (2') => PN > KP

8 tháng 5 2019

Tớ nghĩ là phải thêm bước \(PK=\sqrt{\frac{69}{2}}=\sqrt{35}cm\)

\(NP=\sqrt{41}cm\)

Ta có: \(\sqrt{41}>\sqrt{35,5}\) nên NP > PK

Cảm ơn cậu nhá hiuhiu

10 tháng 12 2016

Kí hiệu tam giác viết là t/g nhé

a) BI là phân giác ABC nên ABI = CBI

Xét t/g BID vuông tại D và t/g BIF vuông tại F có:

BI là cạnh chung

DBI = FBI (cmt)

Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)

b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)

C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)

=> ID = IE (2 cạnh tương ứng)

Từ (1) và (2) => ID = IE = IF (đpcm)

 

10 tháng 12 2016

ban tu ve hinh nhengaingungngaingung

a) Xet tam giac BID va tam giac BIF co:

BI:canh chung

goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)

goc BDI=goc BFI(=90do)

Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)

b) Vi tam giac BID=tam giac BIF(cau a)

Nen ID=IF(2 canh tuong ung) (1)

Xet tam giac AID va tam giac AIE co:

AI:canh chung

goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)

goc ADI=goc AEI(=90do)

Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)

Suy ra:ID=IE(2 canh ung) (2)

Tu (1), (2)\(\Rightarrow\) IF=ID=IE

Chuc ban ngay cang hoc gioi len nheokok

Hen gap lai ban vao dip khac nheok
 

11 tháng 11 2019

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

11 tháng 11 2019

Xét \(\Delta ABC\) có:

c) Ta có \(\Delta ABC\) cân tại \(A\left(cmt\right).\)

=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(HBM\)\(KCM\) có:

\(\widehat{MHB}=\widehat{MKC}=90^0\left(gt\right)\)

\(BM=CM\) (như ở trên)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\Delta HBM=\Delta KCM\) (cạnh huyền - góc nhọn).

=> \(HM=KM\) (2 cạnh tương ứng).

Chúc bạn học tốt!

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

20 tháng 1 2018

PMNIEFKH

a) Xét \(\Delta PIM;\Delta PIN\) có :

\(PM=PN\) (tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của \(\widehat{MPN}\) )

\(PI:chung\)

=> \(\Delta PIM=\Delta PIN\left(c.g.c\right)\)

*Cách khác :

Xét \(\Delta PIM;\Delta PIN\) có :

\(\widehat{PMI}=\widehat{PNI}\) (tam giác MNP cân tại P)

\(PM=PN\)(tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của góc MPN)

=> \(\Delta PIM=\Delta PIN\left(g.c.g\right)\)

b) Xét \(\Delta PEI;\Delta PFI\) có :

\(\widehat{PEI}=\widehat{PFI}\left(=90^{^O}\right)\)

\(PI:Chung\)

\(\widehat{EPI}=\widehat{FPI}\left(cmt\right)\)

=> \(\Delta PEI=\Delta PFI\) (cạnh huyền - góc nhọn)

=> \(IE=IF\) (2 cạnh tương ứng)

c) Ta chứng minh được \(\Delta PIK=\Delta PIH\left(g.c.g\right)\)

Suy ra : \(PK=PH\) (2 cạnh tương ứng)

Xét \(\Delta PHK\) có :

\(PK=PH\left(cmt\right)\)

=> \(\Delta PHK\) cân tại P (đpcm)

d) Xét \(\Delta PEF\) cân tại E có :

\(\widehat{PEF}=\widehat{PFE}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)

Xét \(\Delta PKH\) cân tại P (cmt) có :

\(\widehat{PKH}=\widehat{PHK}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{PEF}=\widehat{PKH}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)

Mà thấy : 2 góc này đều ở vị trí đồng vị

=> \(\text{EF // HK (đpcm)}\)

22 tháng 5 2020

Ủa olm bị lỗi hả, sao đề nó ko ra đây đủ vậy ==??