Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b là kẻ EH vuông góc vs MA đó mk chép lộn đề xin lỗi nha, mong mọi người giúp mk bài này
a: Xét ΔMAE và ΔMBE có
MA=MB
\(\widehat{AME}=\widehat{BME}\)
ME chung
Do đó: ΔMAE=ΔMBE
b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có
ME chung
\(\widehat{HME}=\widehat{KME}\)
Do đó:ΔMHE=ΔMKE
Suy ra: EH=EK
c: Ta có: ΔMAB cân tại M
mà ME là đường trung tuyến
nên ME là đường cao
=>ΔEBI vuông tại E
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)
\(a)Xét\Delta ABC,tacó:\)
\(\Rightarrow A+ABC+ACB=180^o\left(tổngbagóctamgiác\right)\)
\(\Rightarrow90^o+ABC+40^o=180^o\)
\(\Rightarrow ABC=180^o-130^o\)
\(\Rightarrow ABC=50^o\)
\(b)Xét\Delta AMB=\Delta EMC,tacó:\)
\(\left\{{}\begin{matrix}MB=MC\left(gt\right)\\M_1=M_2\\MA=ME\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\)
\(\Rightarrow A=E\left(2góctươngứng\right)\)
\(MàA_1vàE_1ởvịtrísoletrong\)
\(\Rightarrow AB//EC\)
Câu c đợi chút
Chứng minh :
a) Có △ABC cân tại A \(\Rightarrow AB=AC\left(t\text{/c }t\text{/g cân}\right)\)
⇒ \(\widehat{ABC}=\widehat{ACB}\left(t\text{/c t/g cân}\right)\)
Xét △BEC vuông tại E và △CDB vuông tại D có:
BC - cạnh chung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △BEC = △CDB ( cạnh huyền - góc nhọn )
⇒ EC = DB ( tương ứng )
b) Xét △AEC vuông tại E và △ADB vuông tại D có:
EC = DB ( cmt )
AC = AB ( cmt )
⇒ △AEC = △ADB ( cạnh huyền - cạnh góc vuông )
⇒ AE = AD ( tương ứng )
*) Có AC + CN = AN
AB + BM = AM
Mà AC = AB ( cmt ) ; CN = BM ( gt )
⇒ AN = AM
Xét △ANE và △AMD có:
AN = AM ( cmt )
\(\widehat{BAC}-góc\text{ }chung\)
AE = AD ( cmt )
⇒ △ANE = △AMD (c.g.c)
⇒ NE = MD ( tương ứng )
Xét △ECN và △DBM có:
EC = DB ( cmt )
CN = BM ( gt )
EN = DM ( cmt )
⇒ △ECN = △DBM (c.c.c)
c) Có AE = AD ( cmt )
⇒ △AED cân tại A
\(\Rightarrow\widehat{AED}=\dfrac{180^o-\widehat{EAD}}{2}\)(1)
Có AN = AM ( cmt )
⇒ △AMN cân tại A
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{EAD}}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{AMN}\)
Mà \(\widehat{AED}\text{ và }\widehat{AMN}\) là hai góc đồng vị
\(\Rightarrow ED\text{//}MN\) ( dấu hiệu nhận biết )
Từ (1) và (2) => \(\widehat{AMN}=\widehat{AED}\left(=\dfrac{180^o-\widehat{MAN}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Do đó : \(ED//MN\left(đpcm\right)\)
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó; ΔEBC=ΔDCB
b: Xét ΔECN và ΔDBM có
EC=DB
\(\widehat{ECN}=\widehat{DBM}\)
CN=BM
Do đó: ΔECN=ΔDBM
c: Xét ΔABC có AE/AB=AD/AC
nên DE//BC(1)
Xét ΔAMN có AB/BM=AC/CN
nên BC//NM(2)
Từ (1) và (2) suy ra DE//MN