Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tứ giác AMDN có: góc AMD=900
góc MAN=900
góc DNA=900
=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)
b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC
=>AD là đường trung tuyến ứng với cạnh huyền BC
=>AD=BD=CD=BC/2
=> tg ACD cân tại D
Xét tg ACD cân tại D có: DN là đường cao
=>DN là đường trung tuyến của tam giác ADC
=>N là trung điểm của AC
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
- ND = DP ( cmt )
- Góc NFD = Góc PFD ( = 90° )
- DF : cạnh chung
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
DMA = MAN = AND = 900 (gt)
=> AMDN là hình chữ nhật
=> AB // ND
mà D là trung điểm của BC (gt)
=> N là trung điểm của AC
mà N là trung điểm của DE (gt)
=> ADCE là hình bình hành
mà DE _I_ AC (gt)
=> ADCE là hình thoi
a) Tứ giác ����DKMN có �^=�^=�^=90∘D=K=N=90∘ nên là hình chữ nhật.
b) Vì ����DKMN là hình chữ nhật nên ��DF // ��MH
Xét Δ���ΔKFM và Δ���ΔNME có:
�^=�^=90∘K=N=90∘
��=��FM=ME ( giả thiết)
���^=�^KMF=E (đồng vị)
Vậy Δ���=Δ���ΔKFM=ΔNME (cạnh huyền - góc nhọn)
Suy ra ��=��KF=MN (hai cạnh tương ứng) mà ��=��MN=DK nên ��=2��DF=2DK và ��=2��MH=2MN.
Do đó ��=��DF=MH.
Tứ giác ����DFMH có ��DF // ��,��=��MH,DF=MH nên là hình bình hành.
Do đó, hai đường chéo ��,��DM,FH cắt nhau tại trung điểm �O của mỗi đường hay �,�,�F,O,H thẳng hàng.
c) Để hình chữ nhật ����DKMN là hình vuông thì ��=��DK=DN (1)(1)
Mà ��=12��DK=21DF và ��=��=��DN=KM=NE nên ��=12��DN=21DE (2)(2)
Từ (1),(2)(1),(2) suy ra ��=��DF=DE.
Vậy Δ���ΔDFE cần thêm điều kiên cân tại �D.
a) Tứ giác DKMN có 3 góc D=K=N= 90 độ
=> Tg DKMN là hình chữ nhật
Vậy tg DKMN là hình chữ nhật
b) Vì DKMN là hình chữ nhật nên DF//MH
Xét 2 tam giác KFM và NME có:
góc K= góc N = 90 độ
FM=ME(gt)
góc KMF = góc E( đồng vị)
=> Tam giác KFM = tam giác NME (cạnh huyền-góc nhọn)
=>KF=MN( hai cạnh tương ứng) mà MN=DK nên DF=2DK và MH=2MN
Do đó DF=MH
Tứ gáic DFMH có DF//MH, DF=MH nên là hình bình hành
Do đó hai đường chéo DM,FH cắt nhau tại trung điểm O của mỗi đường hay F,O,H thẳng hàng
Vậy 3 điểm F,O,H thẳng hàng
c) Để hình chữ nhật DKMN là hình vuông thì DK=DN(1)
Mà DK=1/2DF và DN=KM=NE nên DN=1/2DE(2)
Từ (1),(2) suy ra DF=DE
Vậy tam giác DFE cần thêm điều kiện cân tại D
Vậy��=