K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Đáp án đúng là D

Vì \(\Delta ABD\backsim\Delta DEF\) với tỉ số đồng dạng là \(k = \frac{1}{3}\) nên \(\frac{{AB}}{{DE}} = \frac{{AD}}{{DF}} = \frac{{BD}}{{EF}} = \frac{1}{3}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Do đó, \(\frac{{AB}}{{DE}} = \frac{1}{3} \Rightarrow \frac{9}{{DE}} = \frac{1}{3} \Rightarrow DE = \frac{{9.3}}{1} = 27\)

Vậy \(DE = 27cm.\)

TAM GIÁC ĐỒNG DẠNG 1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC . b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC . 2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\) 3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây: A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và...
Đọc tiếp

TAM GIÁC ĐỒNG DẠNG

1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC .

b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC .

2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

b) Cho \(\Delta ABC\) có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

5. a) Cho \(\Delta DEF\sim\Delta ABC\) theo tỉ số đồng dạng k = 2. Tìm tỉ số \(\frac{S_{DÈF}}{S_{ABC}}\)

b) Cho \(\Delta DEF\)\(\sim\Delta ABC\) theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số \(\frac{S_{DEF}}{S_{ABC}}\)

6. Cho \(\Delta ABC.\)Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho \(\frac{AD}{AB}=\frac{AE}{AC}.\)Kết luận nào sai

A. \(\Delta ADE\sim\Delta ABC\) B. DE//BC C. \(\frac{AE}{AD}=\frac{AC}{AB}\) D. \(\Delta ADE=\Delta ABC\)

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.\(\Delta ABC\sim\Delta DEF\) B. \(\Delta ABC\sim\Delta EDF\)

C. \(\Delta ABC\sim\Delta DFE\) D.\(\Delta ABC\sim\Delta FED\)

giải giúp mình với! Mình cần gấp

1

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

14 tháng 5 2019

cảm ơn bạn nhiều nha

3 tháng 4 2018

a) Xét tam giác AEC và tam giác ABD:

- ∠BAC chung

- ∠ACE = ∠ADB

⇒ △AEC đồng dạng △ABD (g.g)

b) Theo câu a ⇒ \(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

- ∠BAC chung

=> △ADE đồng dạng △ABC

c) △BEC đồng dạng △BFA(g.g)

=> \(\dfrac{BE}{BF}=\dfrac{BC}{BA}\)

=> AB.BE=BF.BC (1)

△CDB đồng dạng △CFA(g.g)

=> \(\dfrac{CD}{CF}=\dfrac{BC}{AC}\) => CD.AC=CF.BC (2)

Từ (1) và (2) => AB.BE+CD.AC=BF.BC+CF.BC=BC(BF+CF)=BC2.

3 tháng 4 2018

4 tháng 3 2019

Xét tam giác ABC và tam giác DFE

Có : AB/EF=6/12=1/2

AC/FE=9/18=1/2

BC/DE=12/24=1/2

=>AB/DF=AC/FE =BC/DE=1/2

=>tam giác ABC đồng đang với tam giác DFE(c.c.c)

4 tháng 3 2019

xét tam giác abc và tam giác def có

ab/df=6/12=1/2

ac/ef=9/18=1/2

bc/de=12/24=1/2

=>tam giác abc đồng dạng vs tam giác dfe (ccc)

Bài 1:

Ta có: ΔA'B'C'\(\sim\)ΔABC(gt)

\(\frac{A'B'}{AB}=\frac{A'C'}{AC}=\frac{B'C'}{BC}=k\)

hay \(\frac{A'B'}{8}=\frac{A'C'}{6}=\frac{B'C'}{10}\)

⇔B'C'>A'B'>A'C'

hay B'C' là cạnh lớn nhất trong ΔA'B'C'

mà độ dài cạnh lớn nhất là 25cm

nên B'C'=25cm

\(\frac{A'B'}{8}=\frac{A'C'}{6}=\frac{25}{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}A'B'=\frac{8\cdot25}{10}=\frac{200}{10}=20cm\\A'C'=\frac{25\cdot6}{10}=\frac{150}{10}=15cm\end{matrix}\right.\)

Vậy: A'B'=20cm; A'C'=15cm

Bài 2:

Ta có: ΔABC\(\sim\)ΔDEF với tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\frac{C_{ABC}}{C_{DEF}}=\frac{3}{5}\)

hay \(C_{DEF}=\frac{5\cdot12}{3}=\frac{60}{3}=20cm\)

Vậy: Chu vi của ΔDEF là 20cm

5 tháng 5 2020

cảm ơn bạn

12 tháng 2 2017

dễ mà, chu vi DEF = DE+EF+DF=3/2(AB+BC+AC)=3/2 * 30 = 45

13 tháng 2 2017

thanks

12 tháng 2 2017

tg ABC đồng dạng tg DEF <=> \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)

\(\Rightarrow\left\{\begin{matrix}DE=\frac{3AB}{2}\\DF=\frac{3AC}{2}\\EF=\frac{3BC}{2}\end{matrix}\right.\)

\(\Rightarrow DE+DF+EF=\frac{3}{2}\left(AB+AC+BC\right)=\frac{3}{2}\cdot30=45\left(cm\right)\)

Vậy \(C_{DEF}=45\left(cm\right)\)