Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆DIC và ∆DAC ta có :
DC chung
CI = CA
ICD = ACD ( CD là phân giác)
=> ∆DIC = ∆DAC (c.g.c)
=> DA = DI ( tương ứng)
b) Vì ∆DIC = ∆DAC (cmt)
=> DAC = DIC = 90°
c) Ta có : IC = AC (gt)
=> ∆IAC cân tại C
Mà CD là phân giác ∆BCA
=> CD là trung trực ∆AIC
=> CD \(\perp\)AI
a, Xét \(\Delta\) ACD và \(\Delta\) ICD có:
AC=IC ( GT)
\(\widehat{ACD}\) = \(\widehat{ICD}\) ( CD là tia p. giác của \(\widehat{C}\))
CD là cạnh chung
=> \(\Delta\) ACD = \(\Delta\) ICD ( c-g-c )
=> DA = DI ( 2 cạnh tương ứng)
b, Ta có \(\Delta ACD=\Delta ICD\) ( CMT )
=> \(\widehat{CAD}\) = \(\widehat{CID}\) ( 2 góc tương ứng)
a) Xét tam giác vuông BAC và tam giác vuông DAC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta BAC=\Delta DAC\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}\)
\(\Rightarrow\) CA là tia phân giác góc \(\widehat{BCD}.\)
b) Xét tam giác vuông IFC và tam giác vuông IEC có:
Cạnh IC chung
\(\widehat{FCI}=\widehat{ECI}\)
\(\Rightarrow\Delta IFC=\Delta IEC\) (Cạnh huyền-góc nhọn)
\(\Rightarrow CE=CF\)
Vậy tam giác CEF cân tại C.
Gọi giao điểm của IC và EF là J. Ta dễ thấy \(\Delta JFC=\Delta JEC\left(c-g-c\right)\Rightarrow\widehat{FJC}=\widehat{EJC}=90^o\)
Vậy thì EF//BD hay BFED là hình thang.
Lại có \(\Delta BAC=\Delta DAC\Rightarrow\widehat{FBD}=\widehat{EDB}\)
Vậy nên BFED là hình thang cân.
c) Ta có ngay IE = IF, mà IF là đường vuông góc nên luôn nhỏ hơn hoặc bằng đường xiên IB.
Vậy nên \(IE\le IB\)
AI NHANH MIK CHO
PLEASE DO IT FOR ME
I AM SO PLEASED
FAST