Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABHD có HD//AB
nên ABHD là hình thang
mà \(\widehat{BAD}=90^0\)
nên ABHD là hình thang vuông
b: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
nên AEHD là hình chữ nhật
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH cắt DE tại trung điểm của mỗi đường và AH=DE
=>OA=OE
b: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
A B C I H D E O K
Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)
=> ADHE là hình chữ nhật
đt DE cắt đt AH tại O
=> OA = OE
b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)
Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)
t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)
=> \(\widehat{B}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{DEA}\)
=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)
c) Gọi K là giao điểm của AI và DE
Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)
=> AI = IB = IC = 1/2BC
=> t/giác AIC cân tại I
=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)
=> \(\widehat{KAE}+\widehat{KEA}=90^0\)
Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)
=> AI \(\perp\)DE
a) Xét tứ giác ADHE
Ta có: góc A=900(gt)
góc ADH=900(gt)
góc EHD=900(gt)
=>tứ giác ADHE là hcn
=>AH=DE(đpcm)