Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông
A B C H M N E D O
Bài làm
a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)
=> tứ giác AEDH là hình chữ nhật.
=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )
Gọi giao điểm của AH và ED là O
=> Tam giác OHD cân tại O.
=> \(\widehat{AHD}=\widehat{EDH}\) (1)
Mà tam giác DHC vuông tại D
Mà DN là đường trung tuyến ( do N là trung điểm HC )
=> DN = HN = HC
=> Tam giác DHN cân tại N
=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân ) (2)
Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)
=> \(\widehat{AHC}=\widehat{EDN}\)
hay \(90^0=\widehat{EDN}\)
=> DN vuông góc với ED (3)
Vì tam giác OEH cân tại O ( cmt )
=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân ) (4)
Mà tam giác BEH vuông tại H
Mà EM là trung tuyến ( Do N là trung điểm BH )
=> EM = BM = MH
=> Tam giác EMH cân tại M.
=> \(\widehat{MEH}=\widehat{MHE}\) (5)
Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)
=> \(\widehat{OEM}=\widehat{OHM}\)
hoặc \(\widehat{DEM}=\widehat{AHB}\)
hay \(\widehat{DEM}=90^0\)
=> ME vuông góc với ED (6)
Từ (3) và (6) => ME // DN
=> DEMN là hình thang
Mà \(\widehat{DEM}=90^0\)( cmg )
=> Hình thang DEMN là hình thang vuông ( đpcm )
Ta có: góc HEA = góc EAD = góc ADH (=900)
=> tứ giác AEHD là hình chữ nhật
=> ED = AH.
Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT
Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)
Xét tam giác MET và tam giác MHT có:
ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)
=> tam giác MET = tam giác MHT (c-c-c)
=> góc MET= góc MHT =900 (2 góc tương ứng) (2)
Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)
=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)
Từ (2)(3) => EM song song với DN
(vì cùng vuông góc với DE " từ vuông góc đến song song")
=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)
=> hình thang EMND là hình thang vuông
a. Tứ giác AEHD có 3 góc vuông => AEHD là hình chữ nhật
=> DE = AH
b.* Vì D thuộc AB =>
* Gọi O là giao của DE và AH
AEHD là hình chữ nhật => OA = OE => Tam giác OAE cân => hay (1)
Có : ( Hệ quả định lý tổng 3 góc của 1 tam giác ) (2)
Tương tự có : (3)
Từ (1),(2),(3) => đpcm
c. GỌi K là giao của DE và AM
M là trung điểm của cạnh huyền BC trong tam giác ABC vuông tại A => AM là trung tuyến => AM = MC => Tam giác MAC cân =>hay
.
Mà (theo (3))
=>
Áp dụng định lý tổng 3 góc của 1 tam giác tính được :
=> đpcm
P/s: Tham khảo nhé, mà hình như đề thiếu thì phải??
hình bạn tự vẽ nhé
hơi tắt nhưng chắc bạn hiểu
gọi AH giao với ED=O
ta dễ dàng có \(OE=OH;EM=MH\)
=> \(\hept{\begin{cases}\widehat{OEH}=\widehat{OHE}\\\widehat{MEH}=\widehat{MHE}\end{cases}}\)
=> \(\widehat{MED}=\widehat{MHO}=90^o\)
tương tự ta có \(\widehat{EDN}=90^o\)
=> EM//DN(cùng vuông góc với ED=> DEMN là hình thang
Mà \(\widehat{EDN}=90^o\)
=> DEMN là hình thang vuông (ĐPCM)
- Xét \(\Delta BEH\)vuông tại E (vì EH vuông góc với AB)
có EM là đường trung tuyến
suy ra BM = ME = MH
- Xét \(\Delta EMH\)có EM = MH (cmt) suy ra \(\Delta EMH\)cân tại M
suy ra \(\widehat{MEH}=\widehat{MHE}\) \(\left(1\right)\)
- Ta có: HE vuông góc với AE (gt) và AD vuông góc với AE (gt)
suy ra EH // AD
suy ra EHDA là hình thang
- Ta lại có: AE vuông góc với AD (gt) và HD vuông góc với AD (gt)
suy ra AE // HD
- Xét hình thang EHDA có EA // HD (cmt) và EH // AD (cmt)
suy ra EA = HD và EH = AD
- Dễ thấy \(\Delta AHE=\Delta DEH\)(c.g.c)
suy ra \(\widehat{HED}=\widehat{EHA}\) \(\left(2\right)\)
- Cộng \(\left(1\right)\)và \(\left(2\right)\)theo từng vế,
ta được: \(\widehat{MEH}+\widehat{HED}=\widehat{MHE}+\widehat{EHA}=90^0\)
suy ra ME vuông góc với ED
- chứng minh tượng tự ND vuông góc với ED
mà ME vuông góc với ED
suy ra ND // ME
- Xét tứ giác EMND có ND // ME
suy ra EMND là hình thang
mà \(\widehat{MED}=90^0\) suy ra (đpcm)