K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

21 tháng 7 2017

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A, ta được:

B C 2 = A C + A B 2 ⇒ B C 2 = 15 2 + 20 2 ⇔ B C 2 = 25 2  ⇔ BC = 25( cm )

Đặt BD = x ⇒ DC = 25 - x

Áp dụng định lý Py 0 ta – go vào hai tam giác vuông AHB và AHC, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Trừ theo vế các đẳng thức ( 1 ) và ( 2 ) ta được:

15 2 - x 2 - 20 2 + ( 25 - x ) 2 = 0  ⇔ 50x = 450 ⇔ x = 9( cm )

Nên HC = 25 - 9 = 16( cm )

Thay x = 9 vào đẳng thức ( 1 ) ta có:  H A 2 = 15 2 - 9 2 = 122 ⇔ HA = 12( cm )

Áp dụng tính chất đường phân giác AD vào tam giác AHB, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường chất đường phân giác AE của tam giác ACH, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

24 tháng 2 2019

Xét tam giác ABC \(\perp\)tại A

Áp dụng định lí pi-ta-go ta có :

BC= AB2 + AC2

BC2 = 152 + 202

BC2 = 625

BC = 25

Do AD là đường phân giác \(\widehat{A}\)

=) \(\frac{B\text{D}}{C\text{D}}\)\(\frac{AB}{AC}\)

=) \(\frac{B\text{D}}{BC-B\text{D}}\)\(\frac{15}{20}\)

=) \(\frac{B\text{D}}{25-B\text{D}}\)\(\frac{15}{20}\)

=) 20.BD = 15.( 25 - BD )

    20.BD = 375 - 15.BD

    20.BD + 15.BD = 375

          35. BD = 375

                BD \(\approx\)10,7

              =) CD \(\approx\)24,3

24 tháng 2 2019

BẠN SỬ CD\(\approx\)14,3 GIÚP MÌNH NHÉ

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=25cm

AH=15*20/25=12cm

HB=20^2/25=16cm

HC=25-16=9cm

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm