K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài 1: Giả sử

\(8-\sqrt{2}>4+\sqrt{5}\)

\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)

\(\Leftrightarrow16>7+2\sqrt{10}\)

\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)

Vậy \(8-\sqrt{2}>4+\sqrt{5}\)

10 tháng 11 2016

Bài 3: Ta có

\(x^2+2015x-2014=2\sqrt{2017x-2016}\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)

\(\Leftrightarrow x=1\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB^2=3,6*10=36

=>AB=6cm

Xét ΔABC vuông tại A có

sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: ΔABM vuông tại A có AK là đường cao

nên BK*BM=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BK*BM=BH*BC

=>BK/BC=BH/BM

=>ΔBKH đồng dạng với ΔBCM

 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB^2=3,6*10=36

=>AB=6cm

Xét ΔABC vuông tại A có

sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: ΔABM vuông tại A có AK là đường cao

nên BK*BM=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BK*BM=BH*BC

=>BK/BC=BH/BM

=>ΔBKH đồng dạng với ΔBCM

25 tháng 10 2023

a: BC=BH+CH

=4+6

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)

=>\(\widehat{AMB}\simeq39^0\)

c: ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

25 tháng 10 2023

loading...  Hình vẽ đây!

28 tháng 10 2021

xin lỗi nhưng mik mong bạn hiểu ạ :((((

nó bị lỗi gí á

 

28 tháng 10 2021

undefined

22 tháng 10 2023

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.