\(\Delta ABC\)vuông tại A . Dựng các hình vuông ABDE và BCFG sao cho C . D cùng thuộc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

A B C K H I D U V E F

Gọi giao điểm của Ax với cạnh BC là V, trung trực của BC cắt AC,BC lần lượt tại H,F

Phân giác ^BAK cắt BH tại U. Trung trực của BH cắt BH và AU lần lượt tại E và I

Từ giả thiết ta có ^ABC = 2.^ACB. Do H thuộc trung trực của BC nên ^HBC = ^HCB = ^ACB

=> ^ABC = 2.^HBC hay ^ABH = ^ACB. Từ đó \(\Delta\)AHB ~ \(\Delta\)ABC (g.g)

Dễ thấy ^BAU = ^CAV = ^BAC/3, ^ABU = ^ACV => \(\Delta\)AUB ~ \(\Delta\)AVC (g.g)

Do đó \(\frac{BU}{CV}=\frac{AB}{AC}=\frac{BH}{CB}=\frac{BE}{CF}=\frac{BU-BE}{CV-CF}=\frac{EU}{FV}\)

Cũng dễ có \(\Delta\)IEU ~ \(\Delta\)KFV (g.g) => \(\frac{EU}{FV}=\frac{IU}{KV}\). Suy ra \(\frac{BU}{CV}=\frac{IU}{KV}\)

Kết hợp với ^IUB = ^KVC (^AUB = ^AVC) dẫn tới \(\Delta\)BIU ~ \(\Delta\)CKV (c.g.c)

=> ^IBU = ^KCV hay ^IBH = ^KCB. Mà hai tam giác BIH và BKC cân tại I và K nên \(\Delta\)BIH ~ \(\Delta\)BKC

Từ đây \(\Delta\)BIK ~ \(\Delta\)BHC (c.g.c). Có \(\Delta\)BHC cân tại H => \(\Delta\)BIK cân tại I

Nếu ta lấy một điểm D sao cho ^BID = ^IKA, ^IBD = ^KIA thì \(\Delta\)IBD = \(\Delta\)KIA (g.c.g)

=> ^BDI = ^IAK = ^IAB => Từ giác AIBD nội tiếp. Đồng thời có AI = BD nên AIBD là hình thang cân

=> AB = DI. Mà DI = AK (vì \(\Delta\)IBD = \(\Delta\)KIA) nên AB = AK => \(\Delta\)BAK cân tại A

=> ^AKB = (1800 - ^BAK)/2 = \(\frac{180^0-2\alpha}{2}=90^0-\alpha=90^0-\frac{180^0-3\beta}{3}=30^0+\beta\)

Vậy \(\widehat{AKB}=90^0-\alpha=30^0+\beta\).

4 tháng 2 2020

A B O C D x y M N H G Q Q' K

A, tam giác AOC vuông tại A 

=> góc ACO + góc COA = 90 (đl)    (1)

có góc COA + góc COD + góc DOB = 180 

có góc COD = 90 (gt)

=> góc COA + góc DOB = 90    ; (1)

=> góc ACO = góc DOB 

xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)

=> tam giác ACO ~ tam giác BOD (g-g)

=> AC/BO = AO/BD 

=> AO.BO = AC.BD

Có O là trung điểm của AB (gt) => AO = OB = 1/2AB

=> 1/2.AB.1/2.AB = AC.BD

=> 1/4AB^2 = AC.BD

=> AB^2 = 4AC.BD

b,  tam giác CAO ~ tam giác OBD (Câu a)

=> AC/OB = OC/OD

OA = OB (Câu a)

=> AC/OA = OC/OD 

=> AC/OC = OA/OD 

=> tam giác ACOO ~ tam giác OCD 

=> góc ACO = góc OCD

mà CO nằm giữa CA và CD

=> CO là phân giác của góc ACD (đn)

tự chứng minh AC = CM

c,  xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)

MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)

=> tam giác AMB vuông tại M (định lí đảo)

=> AM _|_ NB                                                 (1)

xét tam giác ACM có : AC = CM (Câu b)

=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác

=> CO là đường cao của tam giác ACM (đl)

=> CO _|_AM                                  (2)

(1)(2) => CO // BN (tc)

xét tam giác BAN có : O là trung điểm của AB (gt)

=> C là trung điểm của AN (tc)

d, gọi BC cắt MH tại Q 

có MH // AN do cùng _|_ BA 

xét tam giác BCN và tam giác BCA 

=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)

có CN=CA (câu c)

=> MQ = QH ; Q nằm giữa H và M

=> Q là trung điểm của HM (đn)

kẻ AM cắt BD tại G; Kẻ OK  _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)

dài chẳng làm nữa

     

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

a)

Xét tam giác $AMC$ và $BDM$ có:

\(\left\{\begin{matrix} \widehat{CAM}=\widehat{MBD}=90^0\\ \widehat{AMC}=\widehat{BDM}(=90^0-\widehat{DMB})\\ \end{matrix}\right.\Rightarrow \triangle AMC\sim \triangle BDM(g.g)\)

b) Từ kết quả tam giác đồng dạng phần a suy ra \(\frac{AM}{BD}=\frac{AC}{BM}\)

\(\Rightarrow BD=\frac{AM.BM}{AC}=\frac{6.6}{4}=9\) (cm)

c) Kéo dài $DM$ cắt $Ax$ tại $K$

Xét tam giác $AMK$ và $BMD$ có:

\(\left\{\begin{matrix} AM=BM\\ \widehat{MAK}=\widehat{MBD}=90^0\\ \widehat{AMK}=\widehat{BMD}(\text{đối đỉnh})\end{matrix}\right.\Rightarrow \triangle AMK=\triangle BMD(g.c.g)\)

\(\Rightarrow MK=MD\)

Xét tam giác $CMK$ và $CMD$ có:

\(\left\{\begin{matrix} \text{CM chung}\\ \widehat{CMK}=\widehat{CMD}=90^0\\ KM=DM\end{matrix}\right.\Rightarrow \triangle CMK=\triangle CMD(c.g.c)\)

\(\Rightarrow \widehat{MCK}=\widehat{MCD}\) hay $CM$ là phân giác góc $ACD$

d) \(CM\cap AH=T, DM\cap BH=S\)

Xét tam giác $CAM$ và $CHM$ có:

\(\left\{\begin{matrix} \widehat{CAM}=\widehat{CHM}=90^0\\ \widehat{ACM}=\widehat{HCM}(cmt)\end{matrix}\right.\Rightarrow \triangle CAM\sim \triangle CHM(g.g)\)

\(\Rightarrow \frac{CA}{CH}=\frac{MA}{MH}=\frac{CM}{CM}=1\Rightarrow CA=CH; MA=MH\)

Do đó $CM$ là trung trực của $AH$

\(\Rightarrow CM\perp AH\Rightarrow \widehat{HTM}=90^0\)

Hoàn toàn tương tự: \(DM\perp BH\Rightarrow \widehat{HSM}=90^0\)

Do tứ giác $HTMS$ có 3 góc vuông nên là hình chữ nhật. Do đó \(\widehat{THS}=90^0\Leftrightarrow \widehat{AHB}=90^0\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Hình vẽ

Ôn tập cuối năm phần hình học