Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
Ta lại có △ABC vuông tại A đường cao AH\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{225}=\dfrac{16}{9AC^2}+\dfrac{1}{AC^2}=\dfrac{25}{9AC^2}\Leftrightarrow AC^2=625\Leftrightarrow AC=25\left(cm\right)\)
Ta có △ACH vuông tại H\(\Rightarrow AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2=25^2-15^2=400\Rightarrow CH=20\left(cm\right)\)
1 / xét tam giác ABH đồng dạng vs CAH trg hợp g-g suy ra AB/AC =BH/AH
<=> 3 /7 =BH /42
=> BH =18 cm
2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9
TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc
CHO MÌNH SỬA LẠI CÂU 2: Biết chu vi \(\Delta ABH=30cm\)và chu vi \(\Delta ACH=10cm\).Tính chu vi \(\Delta ABC\)
Ta đặt : \(AB=20a\) ; \(AC=21a\)
Áp dụng ĐL 4 trong hệ thức lượng giác ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}< =>\dfrac{1}{420^2}=\dfrac{1}{2o^2a^2}+\dfrac{1}{21^2a^2}< =>\dfrac{1}{420^2}=\dfrac{29^2}{420^2a^2}< =>\) \(420^2a^2=29^2420^2< =>420a=29.420< =>420a=12180=>a=29\)
=> \(AB=20.29=580\left(\text{đ}v\text{dd}\right)\)
\(=>AC=21.29=609\left(\text{đ}v\text{dd}\right)\)
Áp dụng Đ lí py - ta - go ta có :
\(BC^2=AB^2+AC^2=>BC=\) \(\sqrt{\left(AB^2+AC^2\right)}=\sqrt{\left(580^2+609^2\right)}=841\left(\text{đ}v\text{dd}\right)\)
=> \(Chu-vi-\Delta ABC-l\text{à}:\)
\(C_{\Delta ABC}=AB+AC+BC=580+609+841=2030\left(\text{đ}v\text{dd}\right)\)