\(\Delta ABC\)vuông tại A, có đường cao AH. Từ H vẽ HD vuông góc với AB; HE vuông góc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

a. Tứ giác AEHD có 3 góc vuông => AEHD là hình chữ nhật  
=> DE = AH 
b.* Vì D thuộc AB => image  
* Gọi O là giao của DE và AH 
AEHD là hình chữ nhật => OA = OE => Tam giác OAE cân => image hay image (1) 
Có : image ( Hệ quả định lý tổng 3 góc của 1 tam giác ) (2) 
Tương tự có : image (3) 
Từ (1),(2),(3) => đpcm  
c. GỌi K là giao của DE và AM 
M là trung điểm của cạnh huyền BC trong tam giác ABC vuông tại A => AM là trung tuyến => AM = MC => Tam giác MAC cân =>imagehay 

image .  

Mà image (theo (3)) 
=> image  
Áp dụng định lý tổng 3 góc của 1 tam giác tính được :image  
=> đpcm

P/s: Tham khảo nhé, mà hình như đề thiếu thì phải??

10 tháng 9 2017

ban giai ki hon duoc ko

a) Vì HD vuông góc với AB 

=> HDB = HDA = 90 độ

Mà BAC = 90 độ (gt)

=> BAC = BDH = 90 độ

Mà 2 góc này ở vị trí đồng vị

=> DH //AE

=> DHEA là hình thang 

Mà HE vuông góc với AC

=> HEA = 90 độ

=> HEA = BAC = 90 độ

=> DHEA là hình thang cân 

=> DE = AH ( hình thang  cân hai đường chéo bằng nhau)

=> dpcm

5 tháng 9 2017

hình bạn tự vẽ nhé 

hơi tắt nhưng chắc bạn hiểu 

gọi AH giao với ED=O

ta dễ dàng có \(OE=OH;EM=MH\)

=> \(\hept{\begin{cases}\widehat{OEH}=\widehat{OHE}\\\widehat{MEH}=\widehat{MHE}\end{cases}}\)

=> \(\widehat{MED}=\widehat{MHO}=90^o\)

tương tự ta có \(\widehat{EDN}=90^o\)

=> EM//DN(cùng vuông góc với ED=> DEMN là hình thang 

                                                            Mà \(\widehat{EDN}=90^o\)

=> DEMN là hình thang vuông  (ĐPCM)

5 tháng 9 2017

- Xét \(\Delta BEH\)vuông tại E (vì EH vuông góc với AB) 
có EM là đường trung tuyến 
suy ra BM = ME = MH

- Xét \(\Delta EMH\)có EM = MH (cmt)  suy ra  \(\Delta EMH\)cân tại M
                                                           suy ra  \(\widehat{MEH}=\widehat{MHE}\)                                \(\left(1\right)\)

- Ta có: HE vuông góc với AE (gt)   và  AD vuông góc với AE (gt)        
suy ra  EH // AD
suy ra   EHDA là hình thang

-  Ta lại có:   AE vuông góc với AD (gt)  và HD vuông góc với AD (gt)      
suy ra AE // HD

- Xét hình thang EHDA  có   EA // HD (cmt) và EH // AD (cmt)
suy ra EA = HD và EH = AD

- Dễ thấy  \(\Delta AHE=\Delta DEH\)(c.g.c)
suy ra \(\widehat{HED}=\widehat{EHA}\)                                                                                          \(\left(2\right)\)
- Cộng \(\left(1\right)\)và \(\left(2\right)\)theo từng vế,
ta được: \(\widehat{MEH}+\widehat{HED}=\widehat{MHE}+\widehat{EHA}=90^0\)
suy ra ME vuông góc với ED

- chứng minh tượng tự ND vuông góc với ED
                              mà  ME vuông góc với ED
suy ra ND // ME

- Xét tứ giác  EMND có ND // ME
suy ra EMND là hình thang
mà \(\widehat{MED}=90^0\) suy ra (đpcm)
 

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

2 tháng 2 2021

Bổ sung hình vẽ

a: Xét tứ giác ADHE co

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=BM=CM

ADHE là hình chữ nhật

nên góc AEH=góc ADH=góc ABC

=>góc AEH+góc MAC=90 độ

=>DE vuông góc với AM

30 tháng 10 2024

tui thấy ss sao á

 

NM
21 tháng 12 2020

A B C H D E O P Q

câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.

b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso

\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)

và \(\widehat{QCE}=\widehat{QEC}\)

do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang

5 tháng 1 2020

A B C I H D E O K

Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)

=> ADHE là hình chữ nhật

đt DE cắt đt AH tại O

=> OA = OE

b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)

Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

           t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{B}=\widehat{HAC}\) 

mà \(\widehat{HAC}=\widehat{DEA}\) 

=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)

c) Gọi K là giao điểm của AI và DE

Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)

=> AI = IB = IC = 1/2BC

=> t/giác AIC cân tại I

=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) 

mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)

=> \(\widehat{KAE}+\widehat{KEA}=90^0\)

Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)

=> AI \(\perp\)DE

5 tháng 1 2020

a) Xét tứ giác ADHE 

Ta có: góc A=900(gt)

góc ADH=900(gt)

góc EHD=900(gt)

=>tứ giác ADHE là hcn

=>AH=DE(đpcm)

5 tháng 4 2017

ai tk mk thì mk tk lại

10 tháng 9 2018

Bạn tham khảo bài làm ở đường link phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath