\(\Delta ABC\)vuông tại A, có cạnh BC cố định<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Ban tu ve hinh nha

( tam giac ABC vuong tai A , duong cao AH)

Xet tam giac HAB va tam giac HCA Co

\(\hept{\begin{cases}\widehat{AHB}=\widehat{CHA}=90\\\widehat{HBA}=\widehat{HAC}\left(phu\widehat{HAB}\right)\end{cases}=>\Delta HAB}\) dong dang voi \(\Delta HCA\left(G-G\right)\)

Suy ra\(\frac{AB}{AC}=\frac{HB}{HA}=\frac{HA}{HC}=\frac{4}{9}\left(gt\right)\) =>\(HB=\frac{4HA}{9},HC=\frac{9HA}{4}\) 

=>\(\frac{HB}{HA}=\frac{\frac{4HA}{9}}{\frac{9HA}{4}}=\frac{4HA}{9}.\frac{4}{9HA}=\frac{16}{81}\)

Suy ra ti so hinh chieu cua hai canh goc vuong do tren canh huyen =16/81

Chuc ban hoc tot

12 tháng 8 2018

a\(^3\)+ b\(^3\)= 3ab\(^2\)

=> a.a.a + b.b.b = (3a + 3b)\(^2\)

=> đpcm

1 tháng 8 2019

A B C H E F

a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC

\(AB.BE=BH^2;AC.CF=CH^2\)

\(AB^2=BH.BC;AC^2=CH.BC\)

=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)

<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)

<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)

<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng

Vậy ta có điều phải chứng minh là đúng

b) 

Ta có: \(AH^2=BH.CH\)

=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)

=> \(AH^3=BC.BE.CF\)

c)   

Xét tam giác vuông BEH và tam giác vuông HFC

có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC

=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)

=> \(AH^3=BC.HE.HF\)