\(\Delta ABC\)vuông tạ A có \(\widehat{C}=15^o\), BC=4cm<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm

AH = tan\(\widehat{ACH}\)x HM = tan 15x 2 = \(4-2\sqrt{3}\)cm

Sin \(\widehat{AMH}\)\(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\)  = \(2-\sqrt{3}\)    cm

Định lí Pitago : AM= AH2 + HM2

HC = tan \(\widehat{ACH}\)x AH

12 tháng 7 2018

Tam Giác ABC có A = 90o

AM là trung tuyến

=> tam giác AMC cân tại M

=> AMH = 2.C = 30o

AM = 1/2 . BC = 2 (cm)

=> AH = Sin30 . AM = 1 (cm)

=> HM = Cos30 . AM = \(\sqrt{3}\) (cm)

=> HC = HM + MC = \(\sqrt{3}\) + 2 (cm)

b)

Tính được

AC = \(\sqrt{HC.BC}\)

\(\Rightarrow AC=\sqrt{\left(\sqrt{3}+2\right).4}=2\sqrt{2+\sqrt{3}}\)

\(\Rightarrow C\text{os}15^o=\dfrac{HC}{AC}=\dfrac{2+\sqrt{3}}{2\sqrt{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\)

\(\Rightarrow C\text{os}15^o=\dfrac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{4}=\dfrac{\sqrt{2}.\left(\sqrt{3}+1\right)}{4}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)(đpcm)

5 tháng 9 2021

sao AMH = 2C v ạ

 

31 tháng 1 2017

(Chẳng biết đề có sai ko nữa?)

Bây giờ vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và cho 2 tia tiếp tuyến tại \(B\) và \(C\) của đường tròn gặp nhau tại \(K\).

Khi đó, \(\widehat{BAK}=\widehat{MAC}\) tức là \(AH\) trùng với \(AK\) hoặc 2 tia này đối xứng nhau qua \(AB\).

Ta sẽ CM khả năng thứ 2 vô lí như sau: Theo gt thì \(\widehat{CAH}=\widehat{MAB}\) nên hoàn toàn tương tự (đổi chỗ \(B,C\)) sẽ có \(AH,AK\) đối xứng qua \(AC\) (mâu thuẫn với khả năng thứ 2).

Vậy \(AH\) trùng với \(AK\). Nhưng như vậy thì tam giác này cân nên (???)

31 tháng 1 2017

k bt nx. nhưng hình như t tính ra bac=90 r

18 tháng 9 2020

mơn nhoa