Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ve hinh :
xet tamgiac AHB va tamgiac AHC co : goc AHB = goc AHC = 90 do AH | BC (gt) (2)
tamgiac ABC vuong can tai A (gt) => AB = AC (dn) va goc ABC = goc ACB = 45 (tc) (1)
=> tamgiac AHB = tamgiac AHC (ch - gn)
=> goc BAH = goc CAH (dn)
goc BAH + goc CAH = goc ABC ma goc ABC = 90 do tamgiac ABC vuong can tai A (gt)
=> goc BAH = goc CAH = 45 (3)
(1)(2)(3) => tamgiac AHB va tamgiac AHC vuong can
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Tam giác sao lại có số đo??!!!!
b) Xét \(\Delta AME\)và \(\Delta BMH\)có:
AM = BM (M là trung điểm của AB)
\(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)
ME = MH (gt)
\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)
R làm sao mà suy ra AH vuông góc vs AE??!!!!
c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)
\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AE//BH\)
hay \(AE//BC\)(1)
Xét \(\Delta ANF\)và \(\Delta CNH\)có:
AN = CN (N là trung điểm của AC)
\(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)
NF = NH(gt)
\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AF // CH
hay AF // BC (2)
Từ (1) và (2) => A,E,F thẳng hàng
a: AH=8cm
b: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
c: Xét ΔADH và ΔAEH có
AD=AE
\(\widehat{DAH}=\widehat{EAH}\)
AH chung
Do đó ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
d: Ta có:AD=AE
HD=HE
Do đó:AH là đường trung trực của DE
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: Sửa đề: So sánh ΔADH và ΔCEH
Xét ΔADH và ΔCEH có
AD=CE
góc DAH=góc ECH
AH=CH
=>ΔADH=ΔCEH
c: ΔADH=ΔCEH
=>góc AHD=góc CHE
=>góc AHD+góc AHE=90 độ
=>góc EHD=90 độ
mà HD=HE
nên ΔHED vuông cân tại H