\(\Delta ABC\)vuông cân tại A có \(AH\perp BC\)tại H. Trê...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: Sửa đề: So sánh ΔADH và ΔCEH

Xét ΔADH và ΔCEH có

AD=CE

góc DAH=góc ECH

AH=CH

=>ΔADH=ΔCEH

c: ΔADH=ΔCEH

=>góc AHD=góc CHE

=>góc AHD+góc AHE=90 độ

=>góc EHD=90 độ

mà HD=HE

nên ΔHED vuông cân tại H

2 tháng 2 2019

tu ve hinh : 

xet tamgiac AHB va tamgiac AHC co : goc AHB = goc AHC = 90 do AH | BC (gt)                    (2)

tamgiac ABC vuong can tai A (gt) => AB = AC (dn) va goc ABC = goc ACB = 45 (tc)    (1)

=> tamgiac AHB = tamgiac AHC (ch - gn)

=> goc BAH = goc CAH (dn) 

goc BAH + goc CAH = goc ABC  ma goc ABC = 90 do tamgiac ABC vuong can tai A (gt)

=> goc BAH = goc CAH = 45    (3)

(1)(2)(3) => tamgiac AHB va tamgiac AHC vuong can

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a) Tam giác sao lại có số đo??!!!!

b) Xét \(\Delta AME\)và \(\Delta BMH\)có:

         AM = BM (M là trung điểm của AB)

         \(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)

         ME = MH (gt)

\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)

R làm sao mà suy ra AH vuông góc vs AE??!!!!

c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)

\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AE//BH\)

hay \(AE//BC\)(1)

Xét \(\Delta ANF\)và \(\Delta CNH\)có:

      AN = CN (N là trung điểm của AC)

      \(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)

       NF = NH(gt)

\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> AF // CH

hay AF // BC (2)

Từ (1) và (2) => A,E,F thẳng hàng

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0

a: AH=8cm

b: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

c: Xét ΔADH và ΔAEH có

AD=AE

\(\widehat{DAH}=\widehat{EAH}\)

AH chung

Do đó ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

d: Ta có:AD=AE

HD=HE

Do đó:AH là đường trung trực của DE