Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a: XétΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC
góc BAE chung
Do đó: ΔAEB=ΔADC
b: Xét ΔIBD vuông tại D và ΔICE vuông tại E có
DB=EC
\(\widehat{IBD}=\widehat{ICE}\)
Do đó: ΔIBD=ΔICE
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Hình bạn tự vẽ nhé!
Giải:
Vì D là trung điểm của AC (gt)
nên AD = CD
Xét \(\Delta ABD\) và \(\Delta CED\) có:
AD = CD (chứng minh trên)
\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)
ED = BD (gt)
\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c) (1)
\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AB // CD (dấu hiệu nhận biết) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b) Ta có: AF _|_ BD tại F
CG _|_ DE tại G
\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)
\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)
Xét \(\Delta ADF\) và \(\Delta CDG\) có:
AD = CD (chứng minh trên)
\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)
\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)
\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)
\(\Rightarrow\) DF = DG (2 cạnh tương ứng) (4)
Từ (3), (4) \(\Rightarrowđpcm\)
c) Xét \(\Delta CDE\) có:
Giao điểm 2 đường thẳng CG và EI là M
CG, EI đều là đường cao của \(\Delta CDE\)
\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)
\(\Rightarrow DM\perp AB\)(5)
Xét \(\Delta ABD\) có:
Giao điểm 2 đường thẳng CG, EI là M
AF, BH đều là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\perp AB\) (6)
Từ (5), (6) suy ra đpcm
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
A B C M D E
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB = AC ( gt )
BM = CM ( M là trung điểm BC )
AM : Cạnh chung
=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )
b) Ta có : \(\Delta ABM\) = \(\Delta ACM\) ( cmt )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90
Hay AM \(\bot\) BC
a) ta có tam giác abc là tam giác cân
=> AD=AC
MÀ BD=CE (1)
=>AD=AE(2)
Từ 1 và 2 suy ra DE là đường TB
=> DE=1/2BC
=> DE//BC (đccm)