Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c)
góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
a/ Vì BD là tia phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}\) = \(\widehat{DBC}\)
Xét 2 tam giác ABD và HBD, có: \(\widehat{ABD}\)= \(\widehat{DBC}\) (cmt) và BH=BA (gt)
=>> 2 tam giác bằng nhau (cgv-gnk)
=>> \(\widehat{BHD}\) = \(\widehat{BAD}\) = 90 độ
==>> DH vuông góc với BC
b/ Ta có: \(\widehat{ADB}\)+\(\widehat{BDC}\) =180 độ ( vì 2 góc kề bù)
hay \(\widehat{ADB}\) + 110 = 180 => \(\widehat{ADB}\) = 70 độ
mà \(\widehat{BDH}\) = \(\widehat{ADB}\) ( vì 2 tam giác ABD= HBD)
=>> \(\widehat{BDH}\)= 70 độ
\(\widehat{ADH}\) = \(\widehat{ADB}\) + \(\widehat{BDH}\) = 70 + 70 = 140 độ
A B C D H 1 2 1 2 1
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
a ) Xét \(\Delta ABD\)và \(\Delta ACE\) có : \(BD=CE\left(gt\right);\hept{\begin{cases}\widehat{B}=\widehat{C}\\AB=AC\end{cases}\left(gt\right)}\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(cgc\right)\)
Xét \(\Delta BKE\)và \(\Delta CHD\) có : \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{BKE}=\widehat{CHD}=90^0\left(gt\right);BE=DC\left(=BD+DE=EC+DE\right)\)
\(\Rightarrow\Delta BKE=\Delta CHD\)(CH-GN) \(\Rightarrow DH=EK\)
b) Theo a \(\Delta BKE\)= \(\Delta CHD\) \(\Rightarrow\widehat{KEB}=\widehat{HDC}\Rightarrow\Delta ODE\) cân tại O
c ) Có tam giác ODE cân tại O \(\Rightarrow OD=OE\)
\(DH=OD+OH;EK=OE+OK\) Mà HD = KE (cmt) ; OD = OE (cmt)=> OK = OH
=> O nằm trên đường chung trực của HK
\(\Delta BKE\)= \(\Delta CHD\) theo a nên BK = HC ; Mà AB = AC (gt) => AK = AH => A nằm trên đường chung trực của HK
=> AO là đường trung trực của tam giác cân AHK => AO là đừng phân giác của \(\widehat{BAC}\)
\(\Delta ABD=\Delta HBD\left(c.g.c\right)\Rightarrow\widehat{BAD}=\widehat{BHD}=90^0\Rightarrow DH\perp BC\)
làm cả bài đây :>
A B C D H
xét \(\Delta ABD\) và \(\Delta HBD\)ta có:
\(AB=BH\left(gt\right)\)
\(BD\)là cạnh chung
\(\widehat{ABD}=\widehat{DBH}\)(vì BD là tia phân giác của góc B)
=> \(\Delta ABD\)=\(\Delta HBD\)(c.g.c)
=> \(\widehat{BAD}=\widehat{BHD=90^o}\)(cặp góc tương ứng)
=> \(DH\perp BC\left(đpcm\right)\)
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(HBD\) có:
\(AB=HB\left(gt\right)\)
\(\widehat{ABD}=\widehat{HBD}\) (vì \(BD\) là tia phân giác của \(\widehat{B}\))
Cạnh BD chung
=> \(\Delta ABD=\Delta HBD\left(c-g-c\right)\)
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{BAD}=\widehat{BHD}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^0\left(gt\right)\)
=> \(\widehat{BHD}=90^0.\)
=> \(DH\perp BH\)
Hay \(DH\perp BC.\)
Chúc bạn học tốt!
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!