K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 7 2023
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
29 tháng 11 2023
a: CD//AB
=>\(\widehat{CDB}=\widehat{ABC}\)
Xét (O) có
\(\widehat{DBC}\) là góc tạo bởi dây cung BC và tiếp tuyến BD
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{DBC}=\widehat{BAC}\)
Xét ΔDBC và ΔCAB có
\(\widehat{DBC}=\widehat{CAB}\)
\(\widehat{DCB}=\widehat{ABC}\)
Do đó: ΔDBC đồng dạng với ΔCAB
=>\(\dfrac{DC}{CB}=\dfrac{BC}{AB}\)
=>\(BC^2=AB\cdot DC\)
Cho BG cắt AC tại N, CG cắt AB tại P. Qua B kẻ đường thẳng song song với AC cắt CF,AF tại I,J. Qua C kẻ đường thẳng song song với AB cắt EB,EA tại D,H
\(\Delta BCA\)và \(\Delta CDB\)có : \(\widehat{ABC}=\widehat{BCD}\left(slt\right);\widehat{BAC}=\widehat{CBD}\)(góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn cung BC) nên \(\Delta BCA\infty\Delta CDB\left(g.g\right)\). Suy ra : \(\frac{BC}{CD}=\frac{AB}{BC}\Leftrightarrow BC^2=AB.CD\left(1\right)\)
\(\Delta BCA\)và \(\Delta IBC\)có : \(\widehat{BCA}=\widehat{IBC}\left(slt\right);\widehat{BAC}=\widehat{ICB}\)(góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn cung BC) nên \(\Delta BCA\infty\Delta IBC\left(g.g\right)\). Suy ra : \(\frac{BC}{IB}=\frac{CA}{BC}\Leftrightarrow BC^2=IB.CA\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AB.CD=IB.CA\Leftrightarrow\frac{AB}{BI}=\frac{AC}{CD}\)
Áp dụng hệ quả định lí Talet : AC // IJ\(\Rightarrow\frac{AN}{JB}=\frac{FN}{FB}=\frac{CN}{BI}\Rightarrow BJ=BI\)(vì AN = CN)
AB // DH\(\Rightarrow\frac{PB}{CD}=\frac{EP}{EC}=\frac{AP}{HC}\Rightarrow CD=HC\)(vì PB = AP)
\(\frac{AB}{BI}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BJ}=\frac{AC}{CH}\). \(\widehat{JBA}=\widehat{CAB};\widehat{CAB}=\widehat{ACH}\left(slt\right)\Rightarrow\widehat{JBA}=\widehat{ACH}\)
\(\Delta ABJ,\Delta ACH\)có \(\widehat{JBA}=\widehat{HCA};\frac{AB}{BJ}=\frac{AC}{CH}\Rightarrow\Delta ABJ\infty\Delta ACH\left(c.g.c\right)\Rightarrow\widehat{AJB\:}=\widehat{AHC}\)
Mà \(\widehat{AJB\:}=\widehat{FAC};\widehat{AHC}=\widehat{EAB}\)(đồng vị) nên \(\widehat{EAB}=\widehat{FAC}\)
P/S : - Bài này là câu 7 của đề thi HSG Toán 9 Đà Nẵng 2017 - 2018 vào ngày 1/3 vừa qua. Mình bí bài này nhưng đã nhận được đáp án đề thi và muốn đưa bài giải cho mọi người tham khảo
- Link đáp án : www.facebook.com/toaji.phan/posts/595746860776994?pnref=story
- Link hình : www.facebook.com/toanhockhocothayanh/photos/a.258465918014842.1073741829.258088654719235/295108181017282/?type=3&theater
rảh nhỉ!hỏi rồi trả lời luôn!